SFEWS Vol. 20, Issue 1 | March 2021
#CentralValley #ChinookSalmon #otolithchemistry #Steelhead #monitoring #surveys #catchability #detectionefficiency #DeltaSmelt #supplementation #Ich #pathogens #organiccarbon #stablecarbon #nitrogen #inputs #YubaRiver #watersheds
Variation in Juvenile Salmon Growth Opportunities Across a Shifting Habitat Mosaic
Coleman et al. found that juvenile Chinook Salmon grew faster in the Delta in some years (2016), but slower in the Delta during drought conditions (2014 to 2015). Habitat that featured faster growth rates varied within and among years, suggesting the importance of maintaining a habitat mosaic for juvenile salmonids, particularly in a dynamic environment such as the California Central Valley.
Counting the Parts to Understand the Whole: Rethinking Monitoring of Steelhead in California’s Central Valley
Eschenroeder et al. argue that a reallocation of monitoring resources to better understand the interaction between resident and anadromous Steelhead would provide better data to estimate the vital rates needed to evaluate the effects of recovery actions.
Relative Bias in Catch Among Long-Term Fish Monitoring Surveys Within the San Francisco Estuary
Huntsman et al. assessed relative catchability differences among four long-term fish monitoring surveys from the San Francisco Estuary. Their results demonstrate that catchability is a source of bias among monitoring efforts within the San Francisco Estuary, and assuming equal catchability among surveys, species, and size classes could result in significant bias when describing spatio-temporal patterns in catch if ignored.
Investigation of Molecular Pathogen Screening Assays for Use in Delta Smelt
Gille et al. conducted a pilot study that applied molecular assays originally developed in salmonids to assess the presence of a wide variety of pathogens in the gill tissue of cultured and wild Delta Smelt—as well as cultured fish—deployed in enclosures in the estuary. Although disease is not an overt cause of population decline of Delta Smelt in the San Francisco Estuary, comprehensive pathogen presence and prevalence data are lacking, and unintended transmission of pathogens can have devastating effects on populations already at-risk or on the natural ecosystem at large. Their results corroborate previous work that cultured Delta Smelt do not appear to present a high risk for pathogen transmission during population supplementation or reintroduction.
Multi-Biomarker Analysis for Identifying Organic Matter Sources in Small Mountainous River Watersheds: A Case Study of the Yuba River Watershed
Pondell and Canuel's study focused on identifying the composition of watershed-derived organic matter (OM). To better understand inputs to inland waters and improve distinguish between terrigenous and aquatic sources in downstream systems, such as estuaries and coasts, they surveyed OM sources from the Yuba River watershed in northern California to identify specific biomarkers that represent aquatic and terrigenous OM sources. Results demonstrate the utility of multi-biomarker studies for distinguishing between OM from different sources and land uses, offering new insights for biogeochemical studies in aquatic systems.
Volume 5, Issue 2, 2007
Research Article
Organic Carbon and Disinfection Byproduct Precursor Loads from a Constructed, Non-Tidal Wetland in California's Sacramento–San Joaquin Delta
Wetland restoration on peat islands in the Sacramento-San Joaquin Delta will change the quality of island drainage waters entering the Delta, a primary source of drinking water in California. Peat island drainage waters contain high concentrations of dissolved and particulate organic carbon (DOC and POC) and organic precursors to drinking water disinfection byproducts, such as trihalomethanes (THMs). We quantified the net loads of DOC, POC, and THM-precursors from a constructed subsidence mitigation wetland on Twitchell Island in the Delta to determine the change in drainage water quality that may be caused by conversion of agricultural land on peat islands to permanently flooded, non-tidal wetlands. Creation of permanently flooded wetlands halts oxidative loss of the peat soils and thereby may mitigate the extensive land-surface subsidence of the islands that threatens levee stability in the Delta. Net loads from the wetland were dominated by DOC flushed from the oxidized shallow peat soil layer by seepage flow out of the wetland. The permanently flooded conditions in the overlying wetland resulted in a gradual evolution to anaerobic conditions in the shallow soil layer and a concomitant decrease in the flow could be minimized by reducing the hydraulic gradient between the wetland and the adjacent drainage ditch. Estimates of net loads from the wetland assuming efflux of surface water only were comparable in magnitude to net loads from nearby agricultural fields, but the wetland and agricultural net loads had opposite seasonal variations. Wetland surface water net loads of DOC, POC, and THM-precursors were lower during the winter months when the greatest amounts of water are available for diversion from the Delta to drinking water reservoirs.
Processes Affecting Agricultural Drainwater Quality and Organic Carbon Loads in California's Sacramento–San Joaquin Delta
From 2000 to 2003 we quantified drain flow, drain-and ground-water chemistry and hydrogeologic conditions on Twitchell Island in the Sacramento-San Joaquin Delta. The primary objective was to quantify processes affecting organic carbon concentrations and loads in agricultural drainage water. We collected physical and chemical data in southern and northern areas: TN and TS, respectively. Corn grew in both areas during the spring and summer. The peat soils in the TN area are more decomposed than those in the TS area. Results elucidate processes affecting drain flow and concentrations under varying hydrologic conditions. During May through November, groundwater flows from the permanently saturated zone to drainage ditches, and the resulting average drainage-water quality and dissolved organic carbon (DOC) concentration was similar to the groundwater; the median DOC loads in the TN and TS study areas ranged from 9 to 27 g C/ha-day. The major ion chemistry and stable isotope data confirmed that groundwater was the primary source of drainflow. In contrast, during December through April the drainwater is supplied from the shallow, variably saturated soil-zone. The DOC concentrations, major-ion chemistry, and stable isotope data indicate that the shallow-zone water is partially evaporated and oxidized. Higher flows and DOC concentrations during these months result in higher median DOC loads, which ranged from 84 to 280 g C/ha-day.
During December through April, increasing groundwater levels in the shallow peat layers and mobilization of organic carbon result in high drain flow and increased trihalomethane precursor concentrations and loads. On a per mass DOC basis, drain water collected during high flow periods is less likely to form THMs than during low flow periods. However, the high flows and subsequent high concentrations contribute to substantially higher trihalomethane precursor and DOC loads.
Comparisons of Organic Carbon Analyzers and Related Importance to Water Quality Assessments
This study tested whether analyzers using different methods were equally capable of measuring organic carbon in diverse environmental water samples from California’s Sacramento/San Joaquin Delta and its watersheds. The study also evaluated whether the different instruments might provide differing organic carbon concentration measurements, which could in turn trigger (or not) a regulatory requirement for enhanced coagulation at a water treatment plant. In Phase 1, samples were collected in eight monthly events at five stations associated with California’s State Water Project and analyzed using three high temperature combustion and three chemical oxidation instruments. Significant differences between instruments occurred in only 20% of the analyses. However, 80% of the observed differences were attributed to one combustion instrument that reported higher values compared to the other instruments. In Phase 2, four certified standards were analyzed with nine instruments. Results suggested that the main contributor of the observed differences was some instruments’ inability to remove inorganic carbon, an important step in the analytical process. There were no significant differences in the frequencies at which different instruments would have prescribed enhanced coagulation at a water treatment plant. We concluded that properly operating instruments using any of the standard methods were equally capable of analyzing the diverse concentration levels of organic carbon in the Delta.
Shallow-Water Piscivore-Prey Dynamics in California's Sacramento–San Joaquin Delta
Predation is one mechanism that could lead to low native fish abundance in macrophyte dominated shallow-water habitats in the Sacramento-San Joaquin Delta. We used beach seine and gill net sampling to identify and compare the distribution and feeding ecology of three piscivores (striped bass, Morone saxatilis, largemouth bass, Micropterus salmoides, and Sacramento pikeminnow, Ptychocheilus grandis) at five nearshore sites in the Sacramento-San Joaquin Delta. Sampling was conducted March-October 2001 and 2003. We addressed the following questions. What are the spatial and temporal distributions of age-1 and older striped bass, largemouth bass, and Sacramento pikeminnow? What prey are eaten by these predators? What is the relative importance of predator size versus seasonal prey availability on incidence of piscivory for these predators? What is the likely per capita impact of each piscivore on prey fishes, particularly native fishes? All 76 of our individual station visits yielded at least one of the three species, suggesting that piscivorous fishes frequently occur in Delta shallow-water habitats. All three piscivores had diverse diets.There were noticeable seasonal shifts in prey fish for each of the three piscivores. In general, most native fish were consumed during spring (March-May) and the highest prey species richness occurred during summer (June-August). Largemouth bass likely have the highest per capita impact on nearshore fishes, including native fishes. Largemouth bass preyed on a greater diversity of native fishes than the other two piscivores and consumed native fishes farther into the season (July versus May). Based on binomial generalized additive models, incidence of piscivory was predominantly a function of size for largemouth bass and Sacramento pikeminnow. Largemouth bass became predominantly piscivorous at smaller sizes than Sacramento pikeminnow; about 115 mm versus about 190 mm respectively. In contrast, incidence of piscivory was predominantly a function of season for striped bass. Striped bass were typically most piscivorous during summer and fall regardless of size. We conclude that shallow-water piscivores are widespread in the Delta and generally respond in a density-dependent manner to seasonal changes in prey availability.