SFEWS Vol. 20, Issue 1 | March 2021
#CentralValley #ChinookSalmon #otolithchemistry #Steelhead #monitoring #surveys #catchability #detectionefficiency #DeltaSmelt #supplementation #Ich #pathogens #organiccarbon #stablecarbon #nitrogen #inputs #YubaRiver #watersheds
Variation in Juvenile Salmon Growth Opportunities Across a Shifting Habitat Mosaic
Coleman et al. found that juvenile Chinook Salmon grew faster in the Delta in some years (2016), but slower in the Delta during drought conditions (2014 to 2015). Habitat that featured faster growth rates varied within and among years, suggesting the importance of maintaining a habitat mosaic for juvenile salmonids, particularly in a dynamic environment such as the California Central Valley.
Counting the Parts to Understand the Whole: Rethinking Monitoring of Steelhead in California’s Central Valley
Eschenroeder et al. argue that a reallocation of monitoring resources to better understand the interaction between resident and anadromous Steelhead would provide better data to estimate the vital rates needed to evaluate the effects of recovery actions.
Relative Bias in Catch Among Long-Term Fish Monitoring Surveys Within the San Francisco Estuary
Huntsman et al. assessed relative catchability differences among four long-term fish monitoring surveys from the San Francisco Estuary. Their results demonstrate that catchability is a source of bias among monitoring efforts within the San Francisco Estuary, and assuming equal catchability among surveys, species, and size classes could result in significant bias when describing spatio-temporal patterns in catch if ignored.
Investigation of Molecular Pathogen Screening Assays for Use in Delta Smelt
Gille et al. conducted a pilot study that applied molecular assays originally developed in salmonids to assess the presence of a wide variety of pathogens in the gill tissue of cultured and wild Delta Smelt—as well as cultured fish—deployed in enclosures in the estuary. Although disease is not an overt cause of population decline of Delta Smelt in the San Francisco Estuary, comprehensive pathogen presence and prevalence data are lacking, and unintended transmission of pathogens can have devastating effects on populations already at-risk or on the natural ecosystem at large. Their results corroborate previous work that cultured Delta Smelt do not appear to present a high risk for pathogen transmission during population supplementation or reintroduction.
Multi-Biomarker Analysis for Identifying Organic Matter Sources in Small Mountainous River Watersheds: A Case Study of the Yuba River Watershed
Pondell and Canuel's study focused on identifying the composition of watershed-derived organic matter (OM). To better understand inputs to inland waters and improve distinguish between terrigenous and aquatic sources in downstream systems, such as estuaries and coasts, they surveyed OM sources from the Yuba River watershed in northern California to identify specific biomarkers that represent aquatic and terrigenous OM sources. Results demonstrate the utility of multi-biomarker studies for distinguishing between OM from different sources and land uses, offering new insights for biogeochemical studies in aquatic systems.
Volume 13, Issue 4, 2015
Research Article
Sturgeon in the Sacramento–San Joaquin Watershed: New Insights to Support Conservation and Management
The goal of a day-long symposium on March 3, 2015, Sturgeon in the Sacramento–San Joaquin Watershed: New Insights to Support Conservation and Management, was to present new information about the physiology, behavior, and ecology of the green (Acipenser medirostris) and white sturgeon (Acipenser transmontanus) to help guide enhanced management and conservation efforts within the Sacramento–San Joaquin watershed. This symposium identified current unknowns and highlighted new electronic tracking technologies and physiological techniques to address these knowledge gaps. A number of presentations, each reviewing ongoing research on the two species, was followed by a round-table discussion, in which each of the participants was asked to share recom-mendations for future research on sturgeon in the watershed. This article presents an in-depth review of the scientific information presented at the sympo-sium with a summary of recommendations for future research.
Riverine Nutrient Trends in the Sacramento and San Joaquin Basins, California: A Comparison to State and Regional Water Quality Policies
Non-point source (NPS) contaminant control strategies were initiated in California in the late 1980s under the authority of the State Porter–Cologne Act and eventually for the development of total maximum daily load (TMDL) plans, under the federal Clean Water Act. Most of the NPS TMDLs developed for California’s Central Valley (CV) region were related to pesticides, but not nutrients. Efforts to reduce pesticide loads and concentrations began in earnest around 1990. The NPS control strategies either encouraged or mandated the use of management practices (MPs). Although TMDLs were largely developed for pesticides, the resultant MPs might have affected the runoff of other potential contaminants (such as nutrients). This study evaluates the effect of agricultural NPS control strategies implemented in California’s CV before and between 1990 and 2013, on nutrients, by comparing trends in surface-water concentrations and loads. In general, use of MPs was encouraged during a “voluntary” period (1990 to 2004) and mandated during an “enforcement” period (2004 to 2013). Nutrient concentrations, loads, and trends were estimated by using a recently developed Weighted Regressions on Time, Discharge, and Season (WRTDS) model. Sufficient total phosphorus (TP), total nitrogen (TN), and nitrate (NO3) data were available to compare the voluntary and enforcement periods for twelve sites within the lower Sacramento and San Joaquin basins. Ammonia concentrations and fluxes were evaluated at a subset of these sites. For six of these sites, flow-normalized mean annual concentrations of TP or NO3 decreased at a faster rate during the enforcement period than during the voluntary period. Concentration changes during similar years and ranges of flow conditions suggest that MPs designed for pesticides may also have reduced nutrient loads. Results show that enforceable NPS policies, and accelerated MP implementation, limits NPS pollution, and may control runoff of non-targeted constituents such as nutrients.
- 1 supplemental PDF
You Can't Unscramble an Egg: Population Genetic Structure of Oncorhynchus mykiss in the California Central Valley Inferred from Combined Microsatellite and Single Nucleotide Polymorphism Data
Steelhead/rainbow trout (Oncorhynchus mykiss) are found in all of the major tributaries of the Sacramento and San Joaquin rivers, which flow through California’s Central Valley and enter the ocean through San Francisco Bay and the Golden Gate. This river system is heavily affected by water development, agriculture, and invasive species, and salmon and trout hatchery propagation has been occurring for over 100 years. We collected genotype data for 18 highly variable microsatellite loci and 95 single nucleotide polymorphisms (SNPs) from more than 1,900 fish from Central Valley drainages to analyze genetic diversity, population structure, differentiation between populations above and below dams, and the relationship of Central Valley O. mykiss populations to coastal California steelhead. In addition, we evaluate introgression by both hatchery rainbow trout strains, which have primarily native Central Valley ancestry, and imported coastal steelhead stocks. In contrast to patterns typical of coastal steelhead, Central Valley O. mykiss above and below dams within the same tributary were not found to be each others’ closest relatives, and we found no relationship between genetic and geographic distance among below-barrier populations. While introgression by hatchery rainbow trout strains does not appear to be widespread among above-barrier populations, steelhead in the American River and some neighboring tributaries have been introgressed by coastal steelhead. Together, these results demonstrate that the ancestral population genetic structure that existed among Central Valley tributaries has been significantly altered in contemporary populations. Future conservation, restoration, and mitigation efforts should take this into account when working to meet recovery planning goals.
Distribution and Habitat Associations of California Black Rail (Laterallus jamaicensis cortuniculus) in the Sacramento–San Joaquin Delta
Past studies documenting the distribution and status of state “Threatened" California black rail (Laterallus jamaicensis coturniculus; hereafter black rail) have largely omitted the Sacramento—San Joaquin Delta (hereafter Delta). During March to May of 2009–2011, we conducted call–playback surveys to assess the status of the species within a wide range of wetland habitats of the central Delta region. We detected black rails at 21 of 107 discrete wetland sites, primarily on in-channel islands with dense cover. To better understand the habitat and land cover characteristics, we developed a model of habitat suitability from these occurrence data and a fine-scale vegetation and land use dataset using MaxEnt. We also evaluated differences in the size of wetlands at sites where black rails were detected versus where they were not. Through surveys and quantitative modeling, we found black rail presence differed from other regions within California and Arizona, in that it was positively associated with tall (1 to 5 m) emergent vegetation interspersed with riparian shrubs. Specific plants correlated with black rail presence included emergent wetland (Bolboschoenus acutus, B. californicus, B. acutus, Typha angustifolia, T. latifolia, Phragmites australis) and riparian (Salix exigua, S. lasiolepis, Rosa californica, Rubus discolor, Cornus sericea) species. Median patch size was significantly larger and perimeter-to-area ratios were significantly lower at wetland sites where black rails were found. These results provide a preliminary characterization of black rail habitat in the Delta region and highlight the need for better understanding of this listed species’ population size and habitat use in the region, in light of anticipated climate change effects and proposed large-scale restoration in the Delta.