SFEWS Vol. 20, Issue 1 | March 2021
#CentralValley #ChinookSalmon #otolithchemistry #Steelhead #monitoring #surveys #catchability #detectionefficiency #DeltaSmelt #supplementation #Ich #pathogens #organiccarbon #stablecarbon #nitrogen #inputs #YubaRiver #watersheds
Variation in Juvenile Salmon Growth Opportunities Across a Shifting Habitat Mosaic
Coleman et al. found that juvenile Chinook Salmon grew faster in the Delta in some years (2016), but slower in the Delta during drought conditions (2014 to 2015). Habitat that featured faster growth rates varied within and among years, suggesting the importance of maintaining a habitat mosaic for juvenile salmonids, particularly in a dynamic environment such as the California Central Valley.
Counting the Parts to Understand the Whole: Rethinking Monitoring of Steelhead in California’s Central Valley
Eschenroeder et al. argue that a reallocation of monitoring resources to better understand the interaction between resident and anadromous Steelhead would provide better data to estimate the vital rates needed to evaluate the effects of recovery actions.
Relative Bias in Catch Among Long-Term Fish Monitoring Surveys Within the San Francisco Estuary
Huntsman et al. assessed relative catchability differences among four long-term fish monitoring surveys from the San Francisco Estuary. Their results demonstrate that catchability is a source of bias among monitoring efforts within the San Francisco Estuary, and assuming equal catchability among surveys, species, and size classes could result in significant bias when describing spatio-temporal patterns in catch if ignored.
Investigation of Molecular Pathogen Screening Assays for Use in Delta Smelt
Gille et al. conducted a pilot study that applied molecular assays originally developed in salmonids to assess the presence of a wide variety of pathogens in the gill tissue of cultured and wild Delta Smelt—as well as cultured fish—deployed in enclosures in the estuary. Although disease is not an overt cause of population decline of Delta Smelt in the San Francisco Estuary, comprehensive pathogen presence and prevalence data are lacking, and unintended transmission of pathogens can have devastating effects on populations already at-risk or on the natural ecosystem at large. Their results corroborate previous work that cultured Delta Smelt do not appear to present a high risk for pathogen transmission during population supplementation or reintroduction.
Multi-Biomarker Analysis for Identifying Organic Matter Sources in Small Mountainous River Watersheds: A Case Study of the Yuba River Watershed
Pondell and Canuel's study focused on identifying the composition of watershed-derived organic matter (OM). To better understand inputs to inland waters and improve distinguish between terrigenous and aquatic sources in downstream systems, such as estuaries and coasts, they surveyed OM sources from the Yuba River watershed in northern California to identify specific biomarkers that represent aquatic and terrigenous OM sources. Results demonstrate the utility of multi-biomarker studies for distinguishing between OM from different sources and land uses, offering new insights for biogeochemical studies in aquatic systems.
Volume 11, Issue 1, 2013
Research Article
Delta Subsidence Reversal, Levee Failure, and Aquatic Habitat—A Cautionary Tale
Various schemes are often suggested to reverse the subsidence of lands below sea level in California’s Sacramento—San Joaquin Delta, an area protected by levees (dikes) that have significant probabilities of failure. Elementary modeling is used to estimate the probability distribution of land elevations at time of failure for 36 of these subsided islands, assuming a reasonable potential subsidence reversal rate. Given estimated annual probabilities of levee failure, elevation gains at this rate are not expected to exceed 1 to 2 m before flooding, which would be insufficient to restore most subsided islands to mean sea level (msl). However, under some circumstances 1- to 2-m gains are significant. A framework is introduced for evaluating islands as promising candidates for subsidence reversal based on elevation goals other than msl, as demonstrated though a hypothetical aquatic habitat
example. Here, we recommend relevant subsidence reversal strategies by comparing an elevation goal with each island’s anticipated flooded depth, and we prioritize islands for investment based on trade-offs between anticipated outcome and lost agricultural revenues. This approach might help integrate subsidence reversal activities into long-term Delta planning under a range of flooding, land use, and habitat management scenarios.Ecosystem-scale Selenium Model for the San Francisco Bay-Delta Regional Ecosystem Restoration Implementation Plan
Environmental restoration, regulatory protections, and competing interests for water are changing the balance of selenium (Se) discharges to the San Francisco Bay–Delta Estuary (Bay–Delta). The model for Se described here as part of the Delta Regional Ecosystem Restoration Implementation Plan (DRERIP) draws both from the current state of knowledge of the Bay–Delta and of environmental Se science. It is an ecosystem-scale methodology that is a conceptual and quantitative tool to (1) evaluate implications of Se contamination; (2) better understand protection for fish and aquatic-dependent wildlife; and (3) help evaluate future restoration actions. The model builds from five basic principles that determine ecological risks from Se in aquatic environments: (1) dissolved Se transformation to particulate material Se, which is partly driven by the chemical species of dissolved Se, sets dynamics at the base of the food web; (2) diet drives bioavailability of Se to animals; (3) bioaccumulation differs widely among invertebrates, but not necessarily among fish; (4) ecological risks differ among food webs and predator species; and (5) risk for each predator is driven by a combination of exposures via their specific food web and the species’ inherent sensitivity to Se toxicity. Spatially and temporally matched data sets across media (i.e., water, suspended particulate material, prey, and predator) are needed for initiating modeling and for providing ecologically consistent predictions. The methodology, applied site-specifically to the Bay–Delta, includes use of (1) salinity-specific partitioning factors based on empirical estuary data to quantify the effects of dissolved speciation and phase transformation; (2) species-specific dietary biodynamics to quantify foodweb bioaccumulation; and (3) habitat use and life-cycle data for Bay–Delta predator species to illustrate exposure. Model outcomes show that the north Bay–Delta functions as an efficient biomagnifier of Se in benthic food webs, with the greatest risks to predaceous benthivores occurring under low flow conditions. Improving the characterization of ecological risks from Se in the Bay–Delta will require modernization of the Se database and continuing integration of biogeochemical, ecological, and hydrological dynamics into the model.
- 1 supplemental PDF
Migration Patterns of Juvenile Winter-run-sized Chinook Salmon (Oncorhynchus tshawytscha) through the Sacramento–San Joaquin Delta
The decline of Sacramento River winter-run Chinook salmon (Oncorhynchus tshawytscha) remains one of the major water management issues in the Sacramento River. Few field studies have been published on winter-run, leaving gaps in our knowledge about their life history. This is especially true in the Sacramento–San Joaquin Delta, which provides essential rearing and migratory habitats for winter-run, and serves as the center of water operations for California. Using long-term monitoring data that identified winter-run-sized fish (“winter-run”) using length-at-date criteria, we examined patterns of juvenile migration in terms of geographic distribution, timing, numbers, and residence times. We analyzed the role of flow, turbidity, temperature, and adult escapement on the downstream movement (“migration”) of winter-run. Winter-run passed Knights Landing (rkm 144 or 51 rkm upstream of the Delta) between October and April, with substantial variation in peak time of entry that was strongly associated with the first high flows of the migration season. Specifically, the first day of flows of at least 400 m3 s-1 at Wilkins Slough (rkm 190) coincided with the first day that at least 5% of the annual total catch was observed at Knights Landing. While the period during which winter-run left the Delta spanned several months based on Chipps Island (rkm 29) catch data, the median catch typically occurred over a narrow window in March. Differences in timing of cumulative catch at Knights Landing and Chipps Island indicate that apparent residence time in the Delta ranges from 41 to 117 days, with longer apparent residence times for juveniles arriving earlier at Knights Landing. We discuss the potential importance of the Yolo Bypass floodplain as an alternative rearing and migratory corridor, contingent on the timing, duration, and magnitude of floodplain inundation. These results carry implications for habitat restoration and management of Sacramento River flows.
- 1 supplemental PDF