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Abstract 

Bikeshare programs are increasingly popular in the United States and they are an 

important part of sustainable transportation systems, offering a viable mode choice for many 

types of last-mile trips. This popularity means that an increasing number of people can enjoy the 

convenience of cycling and the associated physical health benefits without actually owning a 

bike (or having access to their own bikes). However, bikeshare systems have not captured high 

levels of ridership from disadvantaged populations. Many barriers exist that prohibit residents 

from disadvantaged communities from accessing bikeshare services. These barriers include 

absence of bikeshare stations within walking distances, lack of financial resources, cultural 

barriers, and/or unsafe cycling environments. Most of the current research on bikeshare programs 

focuses on societal benefits (e.g. reducing greenhouse gas emissions by replacing auto trips with 

bike trips) and bikeshare system management (e.g., bike repositioning between stations). There is 

some emerging research focused on equity issues in developing bikeshare. However, far less 

attention has been paid to bikeshare programs’ potential benefits for disadvantaged communities 

and virtually no quantitative research on how to design bikeshare systems to improve access for 

these populations.  

This dissertation work addresses three fundamental bikeshare equity problems. Chapter 2 

examines whether bikeshare systems have targeted specific populations, and second, I 

quantitatively assess the potential for bikeshare systems to provide greater accessibility for 

disadvantaged communities. The results demonstrate that a well-designed bikeshare system can 

generate greater accessibility improvements for disadvantaged communities compared to the 

same system for other populations. Using a newly developed spatial index that combines the 

potential for increased access to jobs and essential services, the level of bike infrastructure, and 
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the disadvantaged population shares, I also find evidence that existing bikeshare systems have 

been specifically designed to target certain populations. The spatial index can be applied to 

identify potential locations to locate bikeshare stations (dock-based bikeshare systems) or 

rebalance bikes (dockless bikeshare systems) to address bikeshare equity issues.  

In Chapter 3, I extend knowledge about how to estimate bikeshare ridership in 

underserved communities. This research fills a gap by analyzing the current utilization rates of 

bikeshare systems among disadvantaged populations. I specify a negative binomial regression 

model to estimate bikeshare ridership using data from Chicago’s bikeshare system (Divvy). The 

results show that bikeshare stations in disadvantaged communities generate significantly fewer 

bikeshare trips than stations in other areas. Among the factors influencing bikeshare trips, 

employment rate has the highest positive marginal effect when considering limited job 

opportunities in disadvantaged areas. I also find that the bikeshare trip utilization rate differs 

greatly between annual members and day-pass users from disadvantaged communities. The 

proportion of trips by subscribers is significantly lower in disadvantaged communities than in 

other areas. Interestingly, residents in disadvantaged communities tend to make longer bikeshare 

trips if they are annual members. Based on the findings, I discuss planning implications for a 

socially inclusive and equitable bikeshare system.  

Finally, in Chapter 4, I develop a destination competing model to estimate destination 

choices and analyze spatial patterns. Here, I show that users in disadvantaged areas are more 

likely to make bikeshare trips to achieve accessibility improvements, particularly to job 

opportunities. Members of disadvantaged areas paying annual fees are more likely to travel 

longer distance to other areas in order to reach additional opportunities. However, these 
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disadvantaged riders are also more sensitive to extra charge after a free ride and that marginal 

cost for a bikeshare trip will eventually restrict their flexibility in using bikeshare services.  

I conclude the dissertation with a review of major findings and suggestions for 

developing a socially inclusive bikeshare system for both local municipalities and system 

operators.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



v 

 

Acknowledgements 

There are a lot of names that should appear in my list of deeply appreciation. To start 

with, I would like to express my sincere gratitude to my advisor Professor Deb Niemeier for her 

continuous and patient support of my Ph.D. study and related research. She helped me to 

discover my research interest and grow professionally. I could not have imagined having a better 

advisor and mentor for my Ph.D. study. 

I am also extremely grateful for my co-advisor Professor Miguel A. Jaller. He tutors and 

helps me like a close friend. He has provided enormous guidance in conducting my research 

including developing ideas, critical thinking and managing project progress. His guidance has 

helped me in all aspects of writing this thesis.  

I would like to thank another committee member Professor Susan Handy for her 

thoughtful input and constructive advice. Special thanks also to Professor Dan Sperling and 

Professor Jonathan London for their practical suggestions throughout my qualifying process. 

My dissertation research will not become possible without the funding support from the 

National Center for Sustainable Transportation (NCST). 

My five-year Ph.D. study was joyful because of the support from my colleagues and 

friends in Davis. Their support and friendship keep me motivated through these difficult years. 

Special thanks to Yizheng Wu, Sarah Grajdura, Johanna Heyer, and Matthew Palm, for 

providing me with valuable suggestions and guidance on the development of new research ideas 

and providing quality control of my English writing. 

In the last, I would like to express my deepest and most sincere appreciation to my 

mother, who has devoted her lifelong love to unwaveringly support of my studies since I was an 



vi 

 

ignorant child. She is my life-coach and teaches me how to be a good person, which is 

fundamental to my future career success. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vii 

 

Contents 

CHAPTER 1: INTRODUCTION ................................................................................................... 1 

BACKGROUND AND MOTIVATION .................................................................................... 1 

Bikeshare Programs in the United States ................................................................................ 1 

Equity Problems Faced by Bikeshare Programs ..................................................................... 2 

Barriers to Bikeshare for Disadvantaged Communities .......................................................... 2 

RESEARCH OBJECTIVES ....................................................................................................... 3 

RESEARCH SIGNIFICANCE ................................................................................................... 4 

DISSERTATION STRUCTURE................................................................................................ 5 

CHAPTER 2: HIGH IMPACT PRIORITIZATION OF BIKESHARE PROGRAM 

INVESTMENT TO IMPROVE DISADVANTAGED COMMUNITIES’ ACCESS TO JOBS 

AND ESSENTIAL SERVICES ...................................................................................................... 7 

INTRODUCTION ...................................................................................................................... 7 

LITERATURE REVIEW ........................................................................................................... 8 

CASE STUDY CITIES AND DATA DESCRIPTION ............................................................ 11 

Case Study Cities .................................................................................................................. 11 

METHODOLOGY ................................................................................................................... 14 

Identifying Disadvantaged Populations ................................................................................ 14 

Bicycle Infrastructure............................................................................................................ 15 

Accessibility Analyses .......................................................................................................... 16 



viii 

 

Identifying Priority Areas ..................................................................................................... 20 

RESULTS ................................................................................................................................. 22 

Disadvantaged Populations ................................................................................................... 22 

Bicycle Infrastructure............................................................................................................ 26 

Accessibility Improvement ................................................................................................... 30 

Priority Areas for Bikeshare Stations in Disadvantaged Communities ................................ 36 

Current Bikeshare Station Locations .................................................................................... 37 

DISCUSSION ........................................................................................................................... 39 

The Current Bikeshare Station Siting ................................................................................... 39 

Policy Insights for Elimination of Access Barriers and Potential Accessibility Improvement 

for Disadvantaged Communities (Dock-base or Dockless Systems) ................................... 42 

Lessons from Two Case Study Cities ................................................................................... 42 

Limitations and Future Research Directions ......................................................................... 44 

CONCLUSIONS....................................................................................................................... 45 

CHAPTER 3: BIKESHARING ACTIVITIES IN DISADVANTAGED COMMUNITIES (A 

CASE STUDY IN CHICAGO) .................................................................................................... 46 

INTRODUCTION .................................................................................................................... 46 

LITERATURE REVIEW ......................................................................................................... 49 

CASE STUDY CITY AND DATA DESCRIPTION ............................................................... 50 

METHODOLOGY ................................................................................................................... 51 



ix 

 

Buffer Analysis ..................................................................................................................... 52 

Identification of Disadvantaged Communities ..................................................................... 54 

Bikeshare Ridership Estimation ............................................................................................ 55 

Marginal Effect and Elasticity .............................................................................................. 56 

Station-Level Analysis .......................................................................................................... 57 

RESULTS ................................................................................................................................. 58 

Bikeshare Station Distribution .............................................................................................. 59 

Bikesharing Ridership Estimation ........................................................................................ 61 

Marginal Effect and Elasticity .............................................................................................. 66 

Subscription Rate and Trip Expenditures by Demographic Information ............................. 67 

DISCUSSION ........................................................................................................................... 71 

CONCLUSIONS....................................................................................................................... 76 

CHAPTER 4: AN ENTROPY-BASED MODEL FOR BIKESHARE TRIP DISTRIBUTION 

WITH EQUITY INSIGHTS ......................................................................................................... 79 

INTRODUCTION .................................................................................................................... 79 

LITERATURE REVIEW ......................................................................................................... 80 

CASE STUDY CITY AND DATA DESCRIPTION ............................................................... 82 

METHODOLOGY ................................................................................................................... 83 

Entropy-Based Competing-Destination Model ..................................................................... 83 

Parameter Estimation ............................................................................................................ 86 



x 

 

RESULTS ................................................................................................................................. 89 

Model Calibration Results Using Distance as Travel Decay ................................................ 89 

Model Calibration Results Using Travel Time as Travel Decay .......................................... 94 

DISCUSSION ........................................................................................................................... 97 

Real Trip Time and Google API Trip Time.......................................................................... 97 

Trip Spending Difference ................................................................................................... 101 

Willing to Pay for Travel Time Variance ........................................................................... 103 

Trip Distribution between Origins and Destinations .......................................................... 105 

CONCLUSIONS..................................................................................................................... 107 

CHAPTER 5: FUTURE RESEARCH PLAN ............................................................................ 109 

CHAPTER 6: SUMMARY AND CONCLUSIONS .................................................................. 110 

REFERENCES ........................................................................................................................... 112 

APPENDIX ................................................................................................................................. 120 

 

 

 

 

 

 

 

 



 

1 

 

CHAPTER 1: INTRODUCTION 

 

BACKGROUND AND MOTIVATION 

Bikeshare Programs in the United States  

Bikeshare systems, offered as a non-motorized transportation service, are a relatively 

recent transportation strategy that offer members access to a shared bicycle. Users typically pick 

up a bicycle at a bike-docking station, and return it to any empty dock located near the final 

destination. The idea originated in a number of European cities (e.g., Amsterdam). With the 

advent of successful bikeshare systems in Europe, the mode increased in popularity 

internationally. A lot of US cities have joined the bikeshare trend, including Washington, D.C., 

New York City, Chicago, and San Francisco. In 2016, there were 55 bikeshare systems across 

the US, with the majority adopting dock-based and self-serve kiosk systems (National 

Association of City Transportation Officials 2017, 2010–16). 

Between 2000 and 2012, the total number of people in the US who chose to bicycle to 

work increased by 64%, from 480,000 to 786,000 (McKenzie 2014). With the increase in biking, 

local governments have taken a growing interest in bikeshare systems, which offer a secure, easy 

way to make bicycle trips. Most US bikeshare systems are operated by for-profit companies, 

such as Motivate and B-Cycle. For example, Motivate operates bikeshare systems in the San 

Francisco Bay Area (CA), Boston (MA), Chattanooga (TN), and Chicago (IL), while B-Cycle 

runs bikeshare systems in Los Angeles (CA), Philadelphia (PA), Miami (FL). Most of the larger-

scale bikeshare systems are located in the western and northeastern US. The average increase in 

bikeshare trips for Chicago (217%), Washington, D.C. (59%), and New York City (159%) was 
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145% between March and September 2017. In a survey study conducted in Washington D.C. and 

Minneapolis-St. Paul during fall 2011 and early 2012, 38% (both Washington D.C. and 

Minneapolis-St. Paul) of bikeshare trips are going to work or school, following by 21% 

(Washington D.C.) and 14% (Minneapolis-St. Paul) for entertainment or social activities (S. A. 

Shaheen 2012). 

Equity Problems Faced by Bikeshare Programs 

Current bikeshare stations tend to be located in areas with a more affluent and white 

population. Ricci found that bikeshare tends to attract a particular group of users: male, white, 

younger, employed, more affluent, more educated and more likely to be already engaged in 

cycling independently of bikeshare (Ricci 2015). Capital Bikeshare (CaBi) data compiled for 

users in Washington D.C. also shows that white, high-income users predominate (Buck 2013). 

Only 19% of annual CaBi members are non-white and only 24% have an annual income less 

than $ 50,000 (Buck and Buehler 2012). These findings are consistent with Dill’s survey 

investigation (McNeil, Dill, MacArthur, Broach, et al., 2017) and Aultman-Hall’s demographic 

information analysis using bikeshare stations’ buffer areas (Ursaki and Aultman-Hall, 2015). 

Thus, the benefits achieved through bikeshare systems have almost certainly not been extended 

to disadvantaged communities. As bikeshare systems in the US expand, cities increasingly need 

to consider how to serve low-income residents and communities of color (Better Bike Share 

Partnership 2017; Cohen 2016). 

Barriers to Bikeshare for Disadvantaged Communities 

The barriers to increasing bikeshare access to disadvantaged communities can be 

categorized into four main groups: safety concerns, physical, financial, and bicycle culture 

barriers. Safety concerns, considered one of the biggest barriers to bicycling, includes road safety 
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(Fishman et al., 2014; Griffin et al., 2008; Christie et al., 2011), vulnerability to street crime 

(McNeil, Dill, MacArthur, Broach, et al., 2017), and bicycle theft (Lusk et al., 2017). 

Additionally, with a lower percentage of insurance coverage, residents from disadvantaged 

communities are more worried about the safety issue when bicycling on roads (Mattson, 2012). 

The financial barrier refers to membership and usage fees (Fishman, Washington, and Haworth, 

2012; Howland, 2017), and lack of a credit card (Fishman, Washington, and Haworth, 2012; 

Howland, 2017; Goodman and Cheshire, 2014). Physical barriers include the absence of docking 

stations within walking distance (Bernatchez et al., 2015), unavailability of bike helmets 

(Fishman, Washington, and Haworth, 2012), and lack of bikeshare real-time information 

(Fishman, Washington, and Haworth, 2012; Stewart, Johnson, and Smith, 2013). Cultural 

barriers include the attitude in disadvantaged communities that bikeshare systems are for high-

income, educated people and tourists (Bernatchez et al., 2015; Stewart, Johnson, and Smith, 

2013; Nina Hoe, 2015). For general bicycle, cost and limited bicycle infrastructure are important 

barriers for low-income populations (Barajas, Chatman, and Agrawal, 2016; Ylitalo et al., 2016). 

 

RESEARCH OBJECTIVES 

Although there is a fair degree of understanding of the barriers to bikeshare use, far less 

attention has been paid to quantifying bikeshare’s potential to provide accessibility 

improvements for disadvantaged communities. There is also not a well-accepted evaluation 

framework to identify priority areas for implementing bikeshare for disadvantaged communities. 

Finally, there is a relative paucity of research in bikeshare ridership forecasting in disadvantaged 

areas. A review shows that the ridership prediction models do not consider over-dispersion in 
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bikeshare ridership data, and the limited knowledge regarding use of bikeshare by disadvantaged 

populations further constrains forecasts.  

This dissertation research addresses these research gaps using multiple quantitative 

methodologies. To be more specific, this work develops an index to suggest priority areas in 

which disadvantage populations can be better served considering potential accessibility 

improvements. I also applied historical bikeshare trip data to calibrate a statistical regression 

model and a destination competing model.  

 

RESEARCH SIGNIFICANCE 

The following significant contributions result from this research:  

1) I quantitatively extend current knowledge in bikeshare equity studies. Most of the 

traditional equity studies in bikeshare are survey studies. This research combines spatial analysis, 

statistical regression, and a destination-competing model to analyze the current bikeshare system 

siting and bikeshare trip features in disadvantaged areas.  

2) I translate model results to practical suggestions on eliminating bikeshare barriers 

for disadvantaged communities. These suggestions cover guidelines for planning bikeshare 

systems as well as for relocation or rebalancing bikes in managing systems.  

3) I also develop a novel methodology to analyze equity problems that can be 

applied to other transportation modes, e.g., shared rider and autonomous vehicles. I introduce an 

evaluation framework to identify if a specific transportation service is biased in targeting served 

populations. Importantly, I integrate accessibility into the evaluation process.   
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DISSERTATION STRUCTURE 

The chapters in the dissertation are organized as follows. Chapter 2 discusses bikeshare 

programs’ potential to provide greater access to jobs and essential services for disadvantaged 

communities. In this chapter, I use two case study cities (Chicago and Philadelphia) to first, 

examine whether bikeshare systems have targeted specific populations, and second, to 

quantitatively assess the potential for bikeshare systems to provide greater accessibility for 

disadvantaged communities. The results demonstrate that a well-designed bikeshare system can 

generate greater accessibility improvements for disadvantaged communities than the same 

system would produce for other populations. Furthermore, I suggest a newly developed spatial 

index that combines the potential for increased access to jobs and essential services, the level of 

bike infrastructure, and the disadvantaged population shares. The spatial index can be applied to 

identify potential locations to locate bikeshare stations (dock-based bikeshare systems) or 

rebalance bikes (dockless bikeshare systems) to address bikeshare equity issues. 

Chapter 3 introduces the research analyzing current utilization rates of bikeshare systems 

among disadvantaged populations. This study develops a negative binomial regression model to 

estimate bikeshare ridership. The results show that bikeshare stations in disadvantaged 

communities generate significantly fewer annual trips than stations in other areas. Additionally, 

among the factors influencing bikeshare trips, employment rate has the highest positive marginal 

effect considering the limited job opportunities in disadvantaged areas. Furthermore, the research 

analyzes the bikeshare trip utilization between annual members and 24-hour pass users from 

disadvantaged communities. Interestingly, residents in disadvantaged communities tend to make 

longer bikeshare trips if they are annual members. Based on the findings, I discuss planning 

implications for a socially inclusive and equitable bikeshare system. 
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Chapter 4 presents the research estimating bikeshare destination choices for vulnerable 

populations.  I develop a destination competing model to estimate destination choices and 

analyze spatial patterns of parameters in this model. I find that accessibility improvements, 

especially toward job opportunities, are likely to lead to more bikeshare trips in disadvantaged 

areas. Annual members from disadvantaged areas are more likely to travel longer distance to 

other areas in order to reach more services. However, these disadvantaged populations are more 

sensitive to extra charges after a free ride and that the marginal cost for a bikeshare trip will 

restrict their ability to use bikeshare services. 

The last two chapters conclude the dissertation by giving an overview of the 

contributions and a discussion of future research needs. 
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CHAPTER 2: HIGH IMPACT PRIORITIZATION OF BIKESHARE 

PROGRAM INVESTMENT TO IMPROVE DISADVANTAGED 

COMMUNITIES’ ACCESS TO JOBS AND ESSENTIAL SERVICES 

 

INTRODUCTION 

Bikeshare programs are increasingly popular in the United States and they offer an 

important alternative mode choice for many types of last-mile trips. Bikeshare systems have not 

captured high levels of ridership from disadvantaged populations, but there is some evidence that 

current bikeshare systems have specifically targeted certain populations to ensure sufficiently 

high demand for profitability. Far less attention has been paid to bikeshare programs’ potential to 

provide greater access to jobs and essential services for disadvantaged communities. I use two 

case study cities (Chicago and Philadelphia) to first, examine whether bikeshare systems have 

targeted specific populations, and to second, quantitatively assess the potential for bikeshare 

systems to provide greater accessibility for disadvantaged communities. The results demonstrate 

that a well-designed bikeshare system can generate greater accessibility improvements for 

disadvantaged communities than the same system would produce for other populations. Using a 

newly developed spatial index that combines the potential for increased access to jobs and 

essential services, the level of bike infrastructure, and the disadvantaged population shares, I also 

find evidence that existing bikeshare systems have been specifically designed to target certain 

ridership. I find that locating stations in proximity to disadvantaged communities has the 

potential to increase household access (by bike and by bike-to-transit) to jobs and essential 

services and can close accessibility gaps between mobility constrained populations and critical 
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services. The spatial index can be applied to identify potential locations to locate bikeshare 

stations (dock-based bikeshare systems) or rebalance bikes (dockless bikeshare systems) to 

address bikeshare equity issues.  

 

LITERATURE REVIEW 

Bikeshare usage tends to be highly correlated with a variety of factors, including 

population density (Buck & Buehler, 2012; Krykewycz, Puchalsky, Rocks, Bonnette, & 

Jaskiewicz, 2010), income (Rixey, 2013), race (Rixey, 2013), education (Rixey, 2013), weather 

conditions (Li, Zheng, Zhang, & Chen, 2015), and adjacency to bike lanes (Buck & Buehler, 

2012). Among the aforementioned factors, it is worth noting that the proportion of the nonwhite 

population has a negative correlation with ridership (Rixey, 2013). To date, as a way of ensuring 

profitability, private bikeshare companies tend to target populations more likely to use their 

services: male, white, younger, employed, affluent, educated, and those more likely to already be 

engaged in cycling, independent of bikeshare (McNeil, Dill, MacArthur, Broach, & Howland, 

2017; Ricci, 2015). For example, Washington DC’s Capital Bikeshare (CaBi) demographics 

indicate the predominant users are white and of higher income (Buck, 2013). Only 19% of 

annual CaBi members are non-white and riders with an annual income of less than $50,000 make 

up only 24% of members (Buck, 2013).  

The absence of bikeshare stations within walking distances is a barrier for users of the 

system (Bernatchez, Gauvin, Fuller, Dubé, & Drouin, 2015) and the siting of stations is the most 

critical feature of designing a system. A variety of methodologies have been applied in the 

literature demonstrating ways to optimize the placement of bikeshare stations (García-Palomares, 

Gutiérrez, & Latorre, 2012; Lin, Yang, & Chang, 2013; Martinez, Caetano, Eiró, & Cruz, 2012; 
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Romero, Ibeas, Moura, Benavente, & Alonso, 2012). Most of these use objective functions with 

operational costs and/or service levels (measured by the availability rate and coverage of the 

respective origins and destinations) as inputs. In practice, bikeshare stations are usually placed in 

areas with high attraction rates (e.g. shopping centers, transit stations) and/or near sidewalks that 

are adjacent to bike lanes (Burden & Barth, 2009). Noted barriers to the siting of bikeshare 

stations include safety, weather, topography, membership registration process, and the 

unavailability of bike helmets (Fishman, Washington, & Haworth, 2012; Fishman, Washington, 

Haworth, & Mazzei, 2014).   

The aforementioned barriers for general users are only a subset of the barriers faced by 

disadvantaged communities. First, there is a cultural divide that arises as many residents of 

disadvantaged communities mistakenly believe that bikeshare is a transport mode solely for high 

income, highly educated individuals and tourists (Bernatchez et al., 2015; Hoe, 2015; Stewart, 

Johnson, & Smith, 2013). The lack of financial resources such as credit cards, and additional 

costs such as membership fees also inhibit the active use of bikeshare systems in disadvantaged 

communities (Fishman et al., 2012). Furthermore, unsafe cycling environments near or adjacent 

to living areas can impede the popularity of bikeshare in disadvantaged areas. Of all of the 

barriers for disadvantaged communities, anxiety over safety issues stands out as most significant 

(Christie et al., 2011; Griffin, Wilson, Wilcox, Buck, & Ainsworth, 2008; McNeil, Dill, 

MacArthur, Broach, et al., 2017). 

Even when the barriers to cycling are low, there is little empirical data on the cycling 

behavior of residents in disadvantaged communities. This research can draw a few conclusions 

based on correlations with certain types of trip making activity that have been studied. 

McDonald (2008) found that children from low-income and minority groups, particularly 
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African-Americans and Hispanics, are potentially more likely to use active travel modes to 

attend school than whites or higher-income households when considering the combined effect of 

household income, vehicle access, distance between home and school, and residential density. 

Given this information, it is reasonable to conclude that there may be a strong likelihood for 

children in low-income and minority groups to use cycling as a primary mode to school. 

Additionally, McNeil et al. found that low-income African American residents are more likely to 

use bikeshare for recreation and/or exercise as opposed to utilitarian trips (McNeil, Dill, 

MacArthur, Broach, et al., 2017).   

For bikeshare systems to prove useful to disadvantaged communities, the way in which 

they are designed must shift from operationalizing systems that target certain demographics to 

designing systems that target gaps in accessibility. In order to create high impact bikeshare 

systems in such communities, it is necessary to account for the complexities of how 

disadvantaged populations currently access jobs and essential services, while also 

acknowledging that the actual travel behavior forming the basis for these trips is constrained by 

factors that have not been well studied.  

This research presents a new method for identifying how bikeshare systems might be 

spatially allocated to better serve low income and minority households. Using this new index, 

this research tests the hypothesis that existing bikeshare systems have been specifically designed 

to target certain ridership. This research then goes on to show that locating stations in proximity 

to disadvantaged communities has the potential to increase household access (by bike and by 

bike-to-transit) to jobs and essential services. This research demonstrates that appropriately sited 

bikeshare facilities can close the accessibility gaps between mobility constrained populations and 

the critical services upon which they depend.  
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CASE STUDY CITIES AND DATA DESCRIPTION 

Case Study Cities 

This research recruited 16 experts from five different fields (bikeshare academics, a 

bikeshare company, metropolitan planning organizations (MPO), bike advocates, and local 

government) and asked them to rank 34 candidate cities across the available data in terms of 

usefulness for our study. The data for all 34 candidate cities are in the Appendix (Table 24 and 

Table 25). Using their observations, I selected Chicago and Philadelphia for this analysis. These 

cities offer interesting similarities and contrasts in terms of size, location and funding. 

In 2013, the Chicago Department of Transportation (CDOT) launched the Divvy 

bikeshare system (currently 581 stations), and contracted with Motivate to purchase, install, and 

operate the system (Motivate International, 2017a). Divvy acquired start-up federal funding from 

efforts aimed at promoting economic recovery, reducing traffic congestion and improving air 

quality. Funds were also provided from the City’s Tax Increment Financing program. In July of 

2015, Chicago also introduced the “Divvy for Everyone (D4E)” program, which provides 

affordable membership fees to qualifying residents (Motivate International, 2017b).  

Indego, owned by the City of Philadelphia, was planned and managed by the Office of 

Transportation & Infrastructure Systems. A Philadelphia-based business that specializes in 

bikeshare launch (i.e., Bicycle Transit Systems) operates and maintains the bikes and the 

technology platform, which is provided by B-Cycle (City of Philadelphia, 2017). Indego started 

in 2015 and currently has 105 bikeshare stations, approximately one-sixth of the number of 

Chicago stations. Indego is in the early stages of development and Philadelphia made a concerted 

effort to learn from other bikeshare systems before launching (Scola, 2014). One of the critical 
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aspects Indego considered prior to launch was the issue of social equity. Andrew Stober from the 

Mayor's Office of Transportation and Utilities in Philadelphia pointed out that areas outside of 

the business core are an important part of a new bikeshare system (J. Mcdonald, 2015; Scola, 

2014). As a result, at the same time the program started, Indego implemented a reduced 

membership fee plan for low-income residents that includes a new cash payment option for its 

users (Hamilton, 2015; Indego Bikeshare System, 2017; People for Bikes, 2015; Wikipedia, 

2017). 

In addition to both systems’ station location data in two case study cities, the study 

employs the following demographic and facility data.  

• Demographic Census Data: The United States Census Bureau collects demographic 

information using surveys across the United States every ten years. The most recent one 

is the 2010 Census and provides demographic data including population, race, age, and 

household sizes, and many other variables at the census block group level in 2010. 

• American Community Survey (ACS): Similar to the Census 2010, the ACS 2014 is 

another survey program administered by the U.S. Census Bureau. The ACS 2014 

captures the changes taking place in communities throughout the United States in 2014. 

This study uses household income and vehicle ownership data from the ACS at the level 

of census block groups. 

• Longitudinal Employer-Household Dynamics (LEHD) database: This dataset 

provides job data associated with either a home Census Block or a work Census Block. 

The home census block data provides job characteristic data (job types and earnings) for 

residents who live in this census block, while the work census block data provides job 

characteristic data (job types and earnings) for workers who are employed in this census 
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block. This study uses the total number of jobs available in every census block groups for 

later analysis. 

• OpenStreetMap: OpenStreetMap is an open data resource for roads, trails, railway 

stations, and other traffic networks around the world, built by a community of mappers. It 

contains geographic information layers for all the road information in Chicago and 

Philadelphia. The database also contains information about the type of infrastructure, e.g., 

“vehicle road,” “pedestrian way,” or “bicycle lane”. This study used the data to identify 

all bicycle facilities for the case cities. Considering that the data may be not exhaustive, I 

combined it with another bicycle path map from the local data portals to develop a 

comprehensive picture of bicycle infrastructure in Chicago and Philadelphia. The 

accuracy of OpenStreetMap has been verified by Haklay (2010). 

• Google Map Places application programming interface (API): As Google gathers 

more and more geographic data through its diverse practical projects, the company 

provides many useful APIs for public researchers to gain access to these geographic data. 

Among these, Google Place API can return an extensive list of places within a specified 

search radius based on a user’s location. When using this API, users can define the types 

of places they want to search. In this research I calculated the number of schools, 

hospitals, grocery stores and transit (bus and railway) stations within a census block 

group. 
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METHODOLOGY  

Identifying Disadvantaged Populations 

In this research, the term “disadvantaged populations” refers to people of color, low-

income households, and transit-dependent households. Demographic information (population, 

race, median household annual income, and number of household vehicles) were assembled for 

both Chicago and Philadelphia from the 2010 Census. For the purposes of this analysis, African-

American, American Indian, Alaska Native, and Asian were classified as minorities. The 

percentages of minority populations were then calculated for every block group in both Chicago 

and Philadelphia. The median household annual income and number of household vehicles were 

also assembled at the census block group level. I assumed that the ratio of household income and 

household vehicle ownership levels are approximately the same for every block within a block 

group.    

Three criteria were used to designate block group disadvantaged populations: median 

household income, percentage of minority population, and the percentage of households owning 

0-1 vehicles. This research first identified those block groups with a median household income 

below $25,000, the federal poverty definition for a household with four people ($24,600) (U.S. 

Department of Health & Human Services, 2016). Thresholds of low, moderate and high were set 

using the standard deviation and the percentage of minority population and percentage of 

households owning 0-1 vehicles within each block group. Our approach to setting threshold 

levels for percent population and number of vehicles is similar to the approach used by the North 

Central Texas Council of Governments (NCTCOG) in their “Bicycle Need Index” (Table 1) 

(Turner, Hottenstein, & Shunk, 1997). Disadvantaged areas in Chicago are defined as a census 

block group with: a) a median household annual income below $25,000; b) percent of minority 



 

15 

 

populations over 60.9%; and c) percent of households owning or renting 0-1 vehicle over 77.9% 

(Table 1). In Philadelphia, in a similar way, a disadvantaged area is a location with median 

household annual income below $25,000, percent of minority populations over 70.7% of, and 

percent of households owning or renting 0-1 vehicle above 84.9%. 

 

Table 1 Classification of disadvantaged populations. 

Data Level Value 

Percentage of minority 

race1/households 

owning or renting 0-1 

vehicle2 

High Percentage > Mean + 0.5×SD3 

Moderate Mean - 0.5×SD <= Percentage <= Mean + 0.5×SD 

Low Percentage < Mean - 0.5×SD 

Classification Data Chicago Philadelphia 

Disadvantaged 

Income: below the poverty line < $ 25,000 per year 

Percentage 11: High > 60.9% > 70.7% 

Percentage 22: High > 77.9% > 84.9% 

Other 

Income 

Everything else Percentage 1 

Percentage 2 

Note: 1. “Percentage of minority race” is abbreviated as “Percentage 1”; 

          2. “Percentage of households owning or renting 0-1 vehicle” is abbreviated as “Percentage 2”; 
          3. “SD” stands for “Standard deviation”. 
 

Bicycle Infrastructure 

I relied on mapped bicycle infrastructure data from both the OpenStreetMap1 and the 

local government data portals2. The bicycle paths in this research include exclusive restrictive 

paths, exclusive paths, and some paths tagged bicycle friendly in OpenStreetMap. Note that the 

bicycle path network is a subset of road networks; this means I restricted the cycling route 

 

1
 This database contains all the road information for a selected area (https://mapzen.com/data/metro-extracts/). In the 

database, there are a tag for a single path. For example, a path may be tagged with “pedestrian way”. 
2
 Chicago government data portal (https://data.cityofchicago.org/Transportation/Bike-Routes/3w5d-sru8) and 

Philadelphia open data resource (https://www.opendataphilly.org/dataset/bike-network). 

https://mapzen.com/data/metro-extracts/
https://data.cityofchicago.org/Transportation/Bike-Routes/3w5d-sru8)
https://www.opendataphilly.org/dataset/bike-network
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options, which, in turn, causes an interesting finding in our accessibility analysis that I discuss 

later.  

I calculated the total length of bicycle infrastructure (including designated bicycle routes, 

bicycle-pedestrian shared paths, and on-street bicycle paths) falling within each block group. 

Next, bike path density was calculated for every block group as the length of the bike path within 

the block group divided by the block group area. Using the bicycle infrastructure density, I 

organized block groups into high, moderate, and low levels using the same threshold approach 

discussed earlier. As noted earlier, areas with a high level of bike infrastructure will be 

considered as high potential locations for disadvantaged populations to safely cycle for 

recreation and/or exercise. Considering the importance of bicycle infrastructure for 

disadvantaged populations to make a bikeshare trip, I use the density of bicycle infrastructure to 

identify potential areas for bikeshare.  

Accessibility Analyses 

Opportunities and travel time are two important components in any accessibility analysis. 

I use opportunities to refer to low-wage jobs (earning $3333/month or less3), grocery stores, 

hospitals, and schools. Jobs data were taken from the Longitudinal Employer-Household 

Dynamics (LEHD) database. I mapped essential services using the Google Map application 

program interface (API), which returns a large inventory of places (grocery stores, hospitals, and 

schools) within a specified search radius (Figure 1, Figure 2, and Figure 3). 

 

3
 This job data is from LEHD. This database divides jobs by income per month. There are three categories: 1) 

$1250/month or less; 2) $1250/month to $3333/month; 3) greater than $3333/month. This work chose the first two 

categories and defined them as low-income jobs. 
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Figure 1. Distribution of grocery stores in Chicago and Philadelphia. 
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Figure 2. Distribution of schools in Chicago and Philadelphia. 

 
Figure 3. Distribution of hospitals in Chicago and Philadelphia. 

 

I measured the change in accessibility under two scenarios (Figure 4). First, I assumed 

that the pedestrian system is used both alone and in conjunction with transit, and then I measured 

accessibility assuming access to bikeshare. In each scenario, the accessibility is calculated using 

the shortest time by comparing the two options. For the second scenario, I assumed that 

bikeshare is available in residential areas, transit stations, and destinations for services in our 

analysis areas. I also assumed that people are able to access the bikeshare system regardless of 

location or time. Thus, the walking time to get access to bikeshare stations is ignored in the 

second scenario. In this way, I can identify where bikeshare systems can produce the greatest 

benefits (accessibility improvements) when compared to the walk mode. 
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Figure 4. Traffic mode choices in two scenarios. 

 

I calculated travel times assuming typical walking and bicycling speeds (walk speed of 

three miles per hour and bike speed at ten miles per hour (Salon & Handy, 2014)). Travel times 

for public transit network in each of the cities are calculated using data in the General Transit 

Feed Specification (GTFS) format, which is created by local transit providers. The GTFS data 

provide spatially and temporally explicit information on transit routes, stops, and schedules and 

can be incorporated into a GIS framework, making it reasonably straightforward to determine 

access via travel along the transportation network. Note that I restrict the travel time by transit by 

the schedule of transit services. Thus, a person may not have access to an opportunity if there is 

no transit service available at the time they want to start a trip and walking to another block 

group is not allowed (within the specified time allocation). This feature will cause some block 

groups with zero accessibility in scenario 1 and infinite accessibility improvements (scenario 1 
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vs scenario 2). It is important to also note that the trip purposes of bikeshare users vary (Buck et 

al., 2013; McNeil, Dill, MacArthur, & Broach, 2017). Job commute is reported to be the main 

purpose followed by shopping/recreation, school, medical care, and other purposes (McNeil, 

Dill, MacArthur, & Broach, 2017). In Equation 1, I assigned different weight factors to different 

opportunities based on the percentages of trip purpose from survey results by (McNeil, Dill, 

MacArthur, & Broach, 2017).  

I measured accessibility in the standard way using Hansen’s formula in Equation (4) (Liu 

& Zhu, 2004), 

 

 

𝐴𝑖 = ∑ 𝑂𝑗𝑒−𝛽𝑡𝑖𝑗

𝑁

𝑗=1

 (1) 

 

where 𝐴𝑖 is the accessibility of block group 𝑖, 𝑂𝑗 is the sum of opportunities (jobs, transit 

stations, grocery stores, hospitals, and schools with different weight factors) available at block 

group 𝑗, and 𝑁 is the total number of blocks that block group 𝑖 has access to within a specific 

time threshold; 𝛽 is an empirically-derived dispersion parameter (Fotheringham, 1981) and 𝑡𝑖𝑗 is 

the travel time between block group 𝑖 and block group 𝑗. I divided block groups into high, 

moderate, and low levels based on accessibility improvements using the same threshold 

approach discussed earlier. 

Identifying Priority Areas 

I developed a new index to identify locations where bikeshare stations have a high 

potential to increase accessibility for disadvantaged communities. I classified each census block 

group into four different categories based on the quantiles of the levels of served populations, 
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levels of bike infrastructure, and level of accessibility improvement (Table 2). “Very high 

priority for bikeshare stations” refers to locations below each threshold established for 

disadvantaged populations, high level of bike infrastructure quality, and high potential for 

increased job and essential services access via bikeshare. “High priority for bikeshare stations” 

covers areas that have disadvantaged populations, have a high or moderate level of bike 

infrastructure, and provide a high or moderate potential to increase accessibility. “Intermediate 

priority for bikeshare stations” is a location with other populations that have a high or moderate 

level of bike infrastructure or potential to increase accessibility. The last category, “high priority 

bikeshare and bike infrastructure combined need areas,” reflects locations having disadvantaged 

or other populations, a low bike infrastructure quality, and a moderate to high potential for 

increased job and essential service access via bikeshare. 

 

Table 2 Categories classification based on quantiles of three measures. 

 

Category 

Disadvantaged 

areas 
Level of bike infrastructure 

Potential for increased job and 

essential service access 

Yes No High Moderate Low High Moderate Low 

A ✓  ✓   ✓   

B ✓   ✓  ✓   

 ✓  ✓    ✓  

 ✓   ✓   ✓  

  ✓ ✓   ✓   

C  ✓  ✓  ✓   

  ✓ ✓    ✓  

  ✓  ✓   ✓  

D ✓    ✓ ✓   

 ✓    ✓  ✓  

  ✓   ✓ ✓   

  ✓   ✓  ✓  

Note: 

A: Very high priority for bikeshare stations 
B: High priority for bikeshare stations 
C: Intermediate priority for bikeshare stations 
D: High priority bikeshare and bike infrastructure combined need area 
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RESULTS 

Disadvantaged Populations 

In both Chicago and Philadelphia, block groups with a median household annual income 

of less than $25,000 are largely, but not completely, coincident with block groups having 

minority population percentages greater than 50% (Figure 5 and Figure 6). Additionally, 

households tend to have fewer vehicles as we move toward the central city areas (Figure 7). 

Philadelphia has slightly more block groups (12.2%) and also a larger population (10.2%) falling 

into the disadvantaged category compared to Chicago (9.0% of block groups and 7.8% of total 

population) (Table 3). There were not any block groups identified as disadvantaged within the 

central business district (CBD) of Chicago. Two block groups within the Philadelphia CBD are 

classified as low income, people of color, and limited accessibility areas (Figure 8).  

 
Figure 5. Percentage of minority population. 
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Figure 6. Median household income. 
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Figure 7. Percentage of households with less than two vehicles. 

 
Figure 8. Distribution of disadvantaged areas.  

 

Table 3 Number of block groups and population in different levels of served populations. 

Classification Chicago Philadelphia 

 Block group Population Block group Population 

Disadvantaged 207 (9.0%) 222887 (7.8%) 163 (12.2%) 158103 (10.2%) 

Others 2082 (91.0%) 2646668 (92.2%) 1173 (87.8%) 1393670 (89.8%) 

Total 22891 28695552 1336 1551773 

   Note: 1. The unit is a block group; 

             2. The unit is one person. 

 

Since I arbitrarily assign thresholds for minority race and household vehicle ownership, I 

also conducted a sensitivity analysis with four different thresholds for classification (Table 4). 

Our initially assigned thresholds are represented in Classification 3. Smaller thresholds obviously 

result in greater numbers of block groups or population segments as disadvantaged (Table 4). 
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The number increase of disadvantaged population or block groups also becomes smaller when 

the thresholds become bigger (see below, classifications 1 to 5). The reason is that the income 

threshold stays fixed (below $25,000 per year). Based on the proportion of disadvantaged 

population and block groups, I determined that our initial thresholds were reasonable 

(Classification 3). If we observe the spatial distributions of disadvantaged block groups under 

different classifications (Figure 9), the number of disadvantaged areas expands, but still 

concentrate in specific areas (in the west and south of Chicago or in the west and north of 

Philadelphia).   

 

Table 4 Sensitivity analysis for disadvantaged population classification 

Classification Threshold Chicago Philadelphia 

1 

Income: < $25,000 

P11: >M3 + SD3 

      P22: >M + SD 

BG3: 128 (5.6%) 

Pop3: 131900 (4.6%) 

BG: 66 (4.9%) 

Pop: 60898 (3.9%) 

2 

Income: < $25,000 

P1: >M + 0.75×SD 

P2: >M + 0.75×SD 

BG: 179 (7.82%) 

Pop: 190782 (6.6%) 

BG: 116 (8.7%) 

Pop: 111893 (7.2%) 

3 

Income: < $25,000 

P1: >M + 0.5×SD 

P2: >M + 0.5×SD 

BG:207 (9.0%) 

Pop: 222887 (7.8%) 

BG: 163 (12.2%) 

Pop: 158103(10.2%) 

4 

Income: < $25,000 

P1: >M + 0.25×SD 

P2: >M + 0.25×SD 

BG: 236 (10.3%) 

Pop: 252301 (8.8%) 

BG: 191 (14.3%) 

Pop: 185413 (11.9%) 

5 

Income: < $25,000 

P1: >M 

P2: >M 

BG: 263 (11.5%) 

Pop: 280268 (9.8%) 

BG: 224 (16.8%) 

Pop: 223158 (14.4%) 

Note: 1. “Percentage of minority race” is abbreviated as “P 1”; 

          2. “Percentage of households owning or renting 0-1 vehicle” is abbreviated as “P 2”; 
          3. “M”, “SD”, “BG”, “Pop” stand for “Mean”, “Standard deviation”, “Block group”, “Population”, 

respectively. 
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Figure 9. Distribution of disadvantaged block groups under different classification. 

 

Bicycle Infrastructure  

The quantiles for bicycle path densities across all block groups are shown in Table 5. I 

divided block groups into different levels of bicycle infrastructure using the same threshold 

process used to identify disadvantaged communities (Table 5). Philadelphia has fewer block 

groups (22.7% in Chicago vs. 19.2% in Philadelphia) and less population (23.6% in Chicago vs. 

18.7% in Philadelphia) identified as having a high level of bicycle infrastructure (Table 6). From 

the ArcGIS map (Figure 10), the areas with the highest bicycle infrastructure density tend to be 

almost exclusively in the CBD areas. As might be expected, I find limited bicycle path coverage 

in suburban areas (Figure 10 and Figure 11). 
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Table 5 Statistics for bicycle path density within block groups. 

Quantile Chicago Philadelphia 

25% 01 0 

50% 15 12 

75% 33 32 

Maximum 215 220 

Mean 22.3 22.8 

Standard deviation 28.0 32.1 

Threshold 

High > 36.3 > 38.8 

Moderate 8.3 <= and <= 36.3  6.7 <= and <= 38.8 

Low < 8.3  < 6.7  

  Note: 1. The unit is meter per 10000 square meters. 

 

Table 6 Number of block groups and populations at different levels of bicycle infrastructure.        

Level of bicycle 

infrastructure 
Chicago Philadelphia 

 Block group Population Block group Population 

High 520 (22.7%) 676942 (23.6%) 256 (19.2%) 290386 (18.7%) 

Moderate 852 (37.3%) 1101726 (38.4%) 525 (39.3%) 636828 (41.1%) 

Low 917 (40.0%) 1090887 (38.0%) 555 (41.5%) 624559 (40.2%) 

Total 2289 2869555 1336 1551773 
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Figure 10. Density of bike path.  

 

Figure 11. Distribution of block groups at different levels of bicycle infrastructure.  
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The relationship between the level of served population and the availability of bicycle 

infrastructure (as expressed by the density of biking facilities) is shown in Table 7 and Table 8. 

In general, greater population and larger numbers of block groups in disadvantaged communities 

have a low level of bicycle infrastructure compared to other areas in both Chicago and 

Philadelphia. However, there are still some disadvantaged block groups (2.0% in Chicago and 

3.1% in Philadelphia) located in areas with sufficient bicycle infrastructure. Most of these areas 

are adjacent to parks where there are numerous bike paths for exercise and recreation. In 

Philadelphia, this pattern is even more obvious. (Figure 8 and Figure 11). Here, most of the 

disadvantaged communities in the west of the central business boundary in Philadelphia are 

located in areas with high levels of bicycle infrastructure. If we consider just the proportion of 

block group, 25.4% (3.1% out of 12.2%) in disadvantaged areas have high-levels of bicycle 

infrastructure, while only 18.3% (16.1% out of 87.8%) of block groups in other areas do, taking 

Philadelphia as an example.  

 

Table 7 Distribution of block groups. 

Level of 

bicycle 

infrastructure 

Area type 

Disadvantaged areas Other areas 

Chicago Philadelphia Chicago Philadelphia 

High 46 (2.0%) 41 (3.1%) 474 (20.8%) 215 (16.1%) 

Moderate 77 (3.4%) 53 (4.0%) 775 (33.8%) 472 (35.3%) 

Low 84 (3.6%) 69 (5.1%) 833 (36.4%) 486 (36.4%) 

Total 207 (9.0%) 163 (12.2%) 2082 (91.0%) 1173 (87.8) 
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Table 8 Distribution of populations. 

Level of 

bicycle 

infrastructure 

Area type 

Disadvantaged areas Other areas 

Chicago Philadelphia Chicago Philadelphia 

High 51808 (1.8%) 40080 (2.6%) 625134 (21.8%) 250306 (16.1%) 

Moderate 85374 (3.0%) 51054 (3.3%) 1016352 (35.4%) 585774 (37.7%) 

Low 85705 (3.0%) 66969 (4.3%) 1005182 (35.0%) 557590 (35.9%) 

Total 222887 (7.8%) 158103 (10.2%) 2646668 (92.2%) 1393670 (89.8%) 

 

Accessibility Improvement 

When calculating the accessibility values, the choices of 𝛽 and the maximum travel time 

in Equation 1 are important. I also conducted sensitivity analyses for both 𝛽 and the maximum 

travel time (Figure 12). As reflected in Equation 1, the absolute value of accessibility of scenario 

1 or 2 becomes greater with the increase of the maximum travel time and drops with the increase 

of 𝛽, which are also shown in Figure 12. The average accessibility improvement is significantly 

greater when the maximum travel time is smaller. This makes sense because access to some 

opportunities in scenario 2 can be achieved within a constrained time compared to no 

opportunities in scenario 1. I set the value of 𝛽 equal to 0.5 based on our sensitivity analysis and 

set the maximum travel time equal to 10 minutes to avoid unrealistic accessibility improvements. 
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Figure 12. Sensitivity analyses for average accessibility improvement for different groups. 
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After setting 𝛽 and the maximum travel time, I can examine the accessibility values for 

disadvantaged areas and other areas in detail. Histograms of the calculated accessibility values 

for each scenario for both disadvantaged areas and other areas (Figure 13) indicate that some 

areas show no accessibility improvement. This is the result of limited bicycle infrastructure in 

these areas. That is, for areas with limited bicycle paths, negative accessibility improvements (-

100%) can be observed.  

The histograms of accessibility values for scenario 1 and 2 suggest that disadvantage 

areas tend to have smaller absolute accessibilities compared with other areas, especially in 

Chicago. However, when comparing the accessibility improvements that would result from 

bikeshare service, block groups in disadvantaged areas experience greater accessibility 

improvements. To compare the distributions of accessibility improvements in two types of areas, 

I applied the Kolmogorov-Smirnov test, which is a general nonparametric method for comparing 

two samples (Massey Jr, 1951). The K-S test suggests that the distribution of accessibility 

improvements in disadvantaged areas is approximately equivalent to other areas (Chicago: D = 

0.069 and p-value = 0.31; Philadelphia: D = 0.075 and p-value = 0.40). Even though these two 

distributions are similar based on the K-S test, we still can observe increased number of block 

groups in disadvantaged areas with improved accessibility in the tail of the distribution.  
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Figure 13. Histogram of accessibility (two scenarios) and improvements in Chicago and 

Philadelphia. 

 

Figure 14 and Figure 15 show the absolute value of accessibilities for each scenario and 

accessibility improvements (scenario 1 vs scenario 2) in Chicago and Philadelphia. There are two 

completely different patterns that emerge between absolute value of accessibility and 
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accessibility improvement. As might be expected, there are specific areas with low accessibility 

in either scenario 1 or 2, for example, the west and south of Chicago (the most left picture in 

Figure 14). In scenario 1 and 2, there are even some block groups with zero accessibility. As 

mentioned earlier, these result from limited transit service within the maximum travel time or 

insufficient bicycle paths. Many of the zero accessibility block groups are located in 

disadvantaged areas where there is not frequent transit service and the cycling environment is 

unsafe. However, the block groups with high levels of improvements are much more evenly 

distributed throughout Chicago and Philadelphia (the most right picture in Figure 14 and Figure 

15), which is totally different from the spatial distribution of block groups with absolute high 

accessibility in scenario 1 or 2. In Philadelphia, there are large areas with negative accessibility 

improvements. Using Google Map, it is clear that these areas are mainly within an airport and 

ports along the Delaware River in Philadelphia. Figure 16 shows the distribution of block groups 

at different levels of accessibility improvements under the aforementioned classification 

framework.  
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Figure 14. Spatial distribution of accessibility (two scenarios) and improvements in Chicago. 

 

 

Figure 15. Spatial distribution of accessibility (two scenarios) and improvements in Philadelphia. 
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Figure 16. Distribution of block groups at different levels of accessibility improvements. 

 

Priority Areas for Bikeshare Stations in Disadvantaged Communities 

Recall from Table 2 that I had four categories of priority areas. In this study, categories A 

(Very high priority for bikeshare stations) and B (High priority for bikeshare stations) refer to 

areas in which we are mostly concerned with equitable access to bikeshare systems. In Chicago 

3.9% (0.7%+3.2%) of all block groups are captured by the A and B categories; these block 

groups should be considered high priority areas for the expansion of bikeshare systems (Table 9). 

Approximately 5.6% (1.5%+4.1%) of the block groups in Philadelphia are identified as high 

priority areas for bikeshare stations. In both Chicago and Philadelphia, nearly one third of them 

(38.5% for Chicago and 37.9% for Philadelphia) are labeled with intermediate priority for 

bikeshare stations. Almost a quarter of block groups (23.1% for Chicago and 24.9% for 
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Philadelphia) are categorized as high priority areas for bikeshare and bike infrastructure. These 

results clearly indicate that there are sufficient numbers of areas of demand to support targeted 

bikeshare systems. 

 

Table 9 Distribution of block groups in four categories in Chicago and Philadelphia. 

Category Chicago Philadelphia 

A 16 (0.7%) 20 (1.5%) 

B 73 (3.2%) 55 (4.1%) 

C 881 (38.5%) 507 (37.9%) 

D 528 (23.1%) 332 (24.9%) 

Others 791 (34.5%) 422 (31.6%) 

Total number of 

block groups 
2289 1336 

Note: 

A: Very high priority for bikeshare stations  
B: High priority for bikeshare stations 
C: Intermediate priority for bikeshare stations 
D: High priority bikeshare and bike infrastructure combined need areas 

 

Current Bikeshare Station Locations 

I also compared the current bikeshare stations to those block group categories I classified. 

As shown in Table 10, both Chicago (0.3%) and Philadelphia (1.0%) have a small number of 

stations sited in disadvantaged areas that provide very high accessibility improvements. For 

category B, Chicago has only 3.3% of stations in this group, while Philadelphia has 2.9% of 

stations. Comparing percentages of current bikeshare stations located in areas identified as high 

priority for bikeshare systems (category A and category B), Philadelphia performs better than 

Chicago, but Philadelphia also has a much smaller system than Chicago. This suggests that 

Indego’s stated intention to design a bikeshare system with equitable access across different 

populations has been to some degree accomplished. There is another interesting finding; in 
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Chicago, the proportion of bikeshare stations in category D (high priority bikeshare and bike 

infrastructure combined need areas) is nearly three times greater than in Philadelphia. This may 

be the result of differences in the spatial distribution of bicycle infrastructure and disadvantaged 

populations. Note that category D includes some disadvantage block groups with limited bike 

paths. In Chicago, there are a certain number of bikeshare stations in the south and west where a 

high overlap between disadvantaged population and areas with insufficient bicycle paths occurs. 

 

Table 10 Distribution of bikeshare stations in four different categories in Chicago and Philadelphia. 

Category Chicago Philadelphia 

A 2(0.3%) 1 (1.0%) 

B 19 (3.3%) 3 (2.9%) 

C 253 (43.6%) 51 (48.5%) 

D 68 (11.7%) 4 (3.8%) 

Others 239 (41.1%) 46 (43.8%) 

Total number 581 105 

Note: 

A: Very high priority for bikeshare stations  
B: High priority for bikeshare stations 
C: Intermediate priority for bikeshare stations 
D: High priority bikeshare and bike infrastructure combined need areas 
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Figure 17. Map of current bikeshare stations and block group classifications in Chicago and 

Philadelphia. 

 

DISCUSSION 

The Current Bikeshare Station Siting 

I have quantitatively demonstrated that bikeshare stations in both Philadelphia and 

Chicago tend to be located in areas with more affluent and white populations. This is consistent 

with findings from the qualitative investigation by McNeil, Dill, MacArthur, Broach, et al. 

(2017) and the demographic information analysis using bikeshare stations’ buffer areas by 

Ursaki and Aultman-Hall (2016). Additionally, the overall number of bikeshare stations in every 

block group tends to be higher in those block groups having a higher percentage of white 

population (Figure 18). Having limited bikeshare stations in disadvantaged areas affects the 
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bikeshare usage there. Taking Chicago as an example (Figure 19), most of the bikeshare stations 

with high numbers of annual origination or destination trips are located in areas with greater 

white population. Many bikeshare system programs claim to have taken equity into consideration 

for station siting (Howland et al., 2017; Shaheen, Martin, Cohen, Chan, & Pogodzinski, 2014), 

but, as with bikeshare operators, have lacked a quantitative method or index for confirming the 

allocation of stations is equitable (Howland et al., 2017). While guidelines for implementing 

bikeshare systems are available (National Association of City Transportation Officials, 2014), 

they tend to suggest, somewhat simplistically, locations with heavy pedestrian or visitor flow or 

adjacent to safe bicycle infrastructure. They also tend to provide guidance on physical bikeshare 

station siting types and design principles such as how to fit a bikeshare station into a street 

parking lot. When compared with the physical design of a station, I would argue that siting a 

bikeshare station at a location where residents actually benefit from it is more important. The 

index I developed shows that not enough bikeshare stations are placed in disadvantaged areas in 

Chicago and Philadelphia, despite the substantial benefits bikeshare would bring to these 

communities.  
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Figure 18. Distribution of bikeshare stations and white population in Chicago and Philadelphia. 

 
Figure 19. Number of annual origination (“ori_trip”) and annual destination (“des_trip”) trips for 

every station in Chicago. 
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Policy Insights for Elimination of Access Barriers and Potential Accessibility Improvement 

for Disadvantaged Communities (Dock-base or Dockless Systems) 

The index developed in this study can help planners identify high-priority bikeshare 

investment areas where such investments would improve accessibility to opportunities for 

disadvantaged populations. The granularity of our analyses is census block group. There are two 

reasons to conduct spatial analyses at this level. First, on average, there is usually at least one 

bikeshare station in a census block group, making it easy to use the block group as a planning 

unit when a bikeshare system considers expanding. Secondly, the presence of bikeshare stations 

within walking distance is just one of many barriers residents of disadvantaged communities 

face. In our analysis, the average area of block groups is 263,140 and 272,869 square meters in 

Chicago and Philadelphia, respectively, which is approximately a 500-meter square. If a 

disadvantaged block group has a bikeshare station, the average walking distance for residents in 

this block group to get access to the station is within a reasonable 400-meter range (Cohen, 

2016). In this way, our scale-appropriate index can identify the priority areas for bikeshare 

stations and help to eliminate access barriers for disadvantaged populations. Our index also 

identifies areas that need more bike paths, which could help planners in allocating funds for 

improving bicycle infrastructure.  

Lessons from Two Case Study Cities 

As mentioned in section above, the two bikeshare systems in Chicago and Philadelphia 

are owned by the cities and operated by two for-profit companies (Motivate and B-Cycle, 

respectively). Both systems have tried to include more disadvantaged areas into their service 

areas by offering, for example, discounted membership for low-income households. This is 
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implemented through an agreement between bikeshare operators and local cities. Municipalities 

could reduce taxes on those bikeshare operation companies or develop metrics to measure 

bikeshare equity to incentivize companies to offer greater coverage in disadvantaged 

neighborhoods.  

Finally, even though the two bikeshare systems I studied are similar in addressing 

bikeshare equity issues, there is still a difference in how they developed their operational 

strategies. As noted by other research (Buck, 2013; Howland et al., 2017), the extension of a 

large bikeshare system will increase the potential to cover greater numbers of  disadvantaged 

areas. However, as our study implies, a smaller bikeshare system still early in its development 

(like Indego in Philadelphia) can also make a significant reduction in access barriers for 

disadvantaged communities. Chicago has a 581-station system compared to the 105-station 

system in Philadelphia. Both Chicago and Philadelphia have made efforts to guarantee equitable 

access, but the Philadelphia system is a good example of proactively attempting to eliminate 

access barriers for disadvantaged communities. Taking disadvantaged communities into early 

consideration and developing a clear metric to represent different kinds of populations are 

critical factors to making bikeshare systems more equitable. In the early stages of planning, 

Philadelphia reflected on how to implement their system. To eliminate the access barrier for 

disadvantaged communities, 20 out of the first 60 bikeshare stations were planned to be located 

in low-income communities with the remaining 40 to be located in the greater Center City and 

University City (Hahn, 2014). Moreover, Indego in Philadelphia reconsidered all the barriers 

(payment systems, membership models, and perceptions about bikeshare) for low-income 

members. Our research quantitatively shows that access barriers for use of bikeshare can be 
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overcome, to some extent, by carefully considering each factor in the early stages of designing a 

bikeshare system. 

Limitations and Future Research Directions  

It is important to emphasize there are limitations to this study. For one, in our 

accessibility analysis I assumed two scenarios, walk-to-transit and bike-to-transit, to focus on 

benefits of bikeshare systems. However, in reality bicycles are not usually the primary transport 

mode. If more information about traffic demand and transport mode split in disadvantaged areas 

were available, I could have precisely estimated the number of bike trips and created a more 

nuanced model for accurate estimation of accessibility improvement by bikeshare systems. 

Second, the travel times are averaged across entire block groups, and therefore only offer an 

approximate travel time between every block group pair. Third, in the accessibility analysis, 

other important travel elements such as monetary cost of travel could be included since cost is 

also an essential factor of concern for disadvantaged population. Finally, dockless bikeshare 

systems have become increasingly prevalent. Our study does not include dockless systems 

because these new systems have no physical bikeshare stations and dockless bikeshare data are 

not directly available. The dockless systems may be more efficient to cover disadvantaged areas 

since a physical station is not necessary to expand their service areas. However, more studies are 

needed to compare the expense to dynamically relocate bikes to cover more areas (dockless) and 

the financial support to open new bikeshare stations (dock-based). Despite these limitations, this 

study contributes by providing a better understanding of how prioritized investments in bikeshare 

can improve essential accessibility for disadvantaged communities. 
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CONCLUSIONS 

Bikeshare programs can play an important role in sustainable transportation systems by 

offering a viable mode choice for many types of last mile trips. However, recent bikeshare 

systems tend to target more affluent and white-dominated areas. To shed light on this problem, 

this paper conducts an accessibility analysis with and without bikeshare. Based on our 

quantitative analysis, bikeshare systems can produce substantial accessibility improvements for 

disadvantaged communities. Average accessibility improvements for disadvantaged communities 

can be greater than those experienced in other areas. Furthermore, our research presents a new 

index that identifies bikeshare station locations providing high potential accessibility 

improvement to jobs and essential services for disadvantaged communities. By comparing these 

potential locations with current dock-based bikeshare station siting, our research clearly 

demonstrates that most of the current bikeshare stations in Chicago and Philadelphia are not 

located in high priority areas for bikeshare stations if we consider disadvantaged populations. 

Through these two study cities, I learn that a bikeshare system in its early stages can proactively 

attempt to eliminate access barriers for disadvantaged communities with consideration of 

equitable accessibility.  
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CHAPTER 3: BIKESHARING ACTIVITIES IN DISADVANTAGED 

COMMUNITIES (A CASE STUDY IN CHICAGO) 

 

INTRODUCTION 

Bikeshare, as a non-motorized transportation service, is an increasingly prevalent 

transportation option that offers members access to shared bicycles (NACTO 2018). In North 

America, a recorded 35 million bikeshare trips were made in 2017; 25% more than in 2016 

(NACTO 2018). For example, the “Divvy” bikeshare system in Chicago has increased total 

annual trips by almost 50%, from 2.45 million in 2014 to 3.81 million in 2017 (Motivate 

International 2018b).  

Technology innovations in managing bikeshare systems (BSSs) have progressed from 

unlocked and untended coin-deposit systems to automated self-serve kiosk systems (Gaegauf 

2014; S. Shaheen, Guzman, and Zhang 2010), and recently, dockless systems. Self-serve kiosk 

and dockless systems achieve a more user-friendly interface, and are convenient for 

unsubscribed users with smartphones and credit cards. In 2016, there were 55 bikeshare systems 

across the US, with the majority adopting dock-based and self-serve kiosk systems (National 

Association of City Transportation Officials 2017, 2010–16). With the introduction and growing 

prevalence of dockless systems the numbers of both bikeshare systems and bikes continue to 

increase. New services using scooters are providing other options in many urban settings. 

These systems have broad benefits, not only at the city level, but also for individuals. 

Many cities around the world have adopted these services and enjoyed considerable 

environmental and social benefits (Fishman, Washington, and Haworth 2014; Wang and Zhou 
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2017). Among their benefits, bikeshare systems can provide reduced traffic congestion, 

improved accessibility and an environmentally friendly urban transportation option (Woodcock 

et al. 2014). BSSs also provide benefits in terms of improving physical health, eliminating the 

maintenance burden of bicycle ownership, and reducing the risk of bike theft and vandalism, and 

bike storage requirements, (Qian and Niemeier 2019). However, in many cases, disadvantaged 

populations do not enjoy these broad benefits due to existing cultural and financial barriers, or 

limited or no availability of bikeshare stations within walking distance (Bernatchez et al. 2015; 

Cohen 2016). Among these, financial constraints are a primary issue that discourages 

disadvantaged populations from joining bikeshare programs (McNeil, Dill, MacArthur, and 

Broach 2017). Fishman, Washington, & Haworth (2012) found that the membership fee is an 

expense that discourages people, especially from disadvantaged communities, from using the 

systems. Moreover, besides the one-time membership fee, users must “pay as you go.” A case in 

London evidenced a decrease in bikeshare usage among low-income areas after the price 

doubled (Goodman and Cheshire 2014). Residents living in poverty have limited mobility and 

accessibility options, mainly because of financial conditions and transit-dependence (often with 

sub-par quality of service). Financial barriers, to some extent, hinder people from disadvantaged 

communities from enjoying the accessibility improvements that could be realized through BSSs. 

Examples can be found on official BSS websites and in the media of current BSS efforts 

to expand systems to cover disadvantaged areas, to mitigate the financial barriers to 

participation. For instance, “Motivate,” a for-profit bikeshare company, has promoted a five-

dollar annual membership program among their operated systems. In July of 2015, Divvy 

launched this special membership program and named it “Divvy for Everyone (D4E).” Two 

years later, GoBike in San Francisco, Capital bikeshare in Washington D.C., and CitiBike in 



 

48 

 

New York introduced similar programs. All of these programs offer an affordable annual 

membership fee (five dollars) for low-income populations (Motivate International 2017b; 

CitiBike 2018; Motivate International 2018a; Capital Bikeshare 2018). Besides the one-time $5 

annual membership fee, Divvy also introduced a cash payment system since many residents in 

disadvantaged communities do not have credit cards (Motivate International 2017b). 

There are a few studies analyzing equity issues for bikeshare systems, and identifying the 

bikeshare user’s profile, including the average user’s income, at a system level from survey data 

(McNeil, Dill, MacArthur, and Broach 2017; Buck 2013; Cohen 2016; Bernatchez et al. 2015). 

Another vein of research develops bikeshare ridership estimation models with spatiotemporal 

and demographic variables, including income. However, these models do not consider the 

disaggregate impacts related to disadvantaged communities. Information about how many trips 

generated in disadvantaged areas is limited. Further, there is a lack of research studying the 

impacts of financial barriers in disadvantaged areas at the station level. To address these gaps, 

this study examined the relationship between bikeshare ridership and disadvantaged 

communities. In doing so, I estimated an econometric model relating ridership to system 

demographics, and environmental variables and used the model to analyze marginal effects and 

elasticities of variables significantly affecting ridership. The results clarify the impacts of the 

financial barriers by analyzing the proportion of bikeshare trips made by annual members, and 

comparing ridership expenditures between users in disadvantaged and other areas. Finally, I 

discuss the implications of these results in fostering a more sustainable and equitable 

transportation system. 
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LITERATURE REVIEW 

In light of the growth of BSS, operators, planners, and academics have been interested in 

predicting future usage. To do so, they have developed and applied different methodologies with 

different temporal scales and resolutions. Some focus on estimates per year or per month, usually 

conducted at an aggregate level. For example, at the beginning stage of implementing a large-

scale BSS, Lyon and Paris, France predicted potential bikeshare trip volumes based on 

demographic and transportation data (Krykewycz et al. 2010). Similarly, to explore the 

feasibility of a BSS in Philadelphia, researchers created a “Bikeshare Score” to identify areas 

with a high potential demand to implement the BSS (Krykewycz et al. 2010). The “Bikeshare 

Score” uses data such as population, job density, proximity to parks, recreation areas and other 

facilities, and proximity to transit stations. Likewise, Frade and Ribeiro (2014) developed a 

demand estimation method at the traffic analysis zone level, combining target populations of 

bikeshare, trip characteristics, and physical characteristics of city paths (e.g., slope of a road). 

In addition to these aggregate models, disaggregate ridership prediction research has 

received increased attention. Rixey (2013) introduced a linear regression model to forecast 

station-level monthly bikeshare ridership. Vogel and Mattfeld (2011) used time-series analyses 

to forecast daily and hourly bike demands to support strategic and operational decisions. As the 

level of analysis becomes more disaggregated, more detailed data is introduced into prediction 

models. For example, Giot and Cherrier (2014) found that weather forecasts and bikeshare usage 

within the preceding 24 hours are essential in predicting bikeshare usage per hour. Hyland et al. 

(2017) developed a hybrid cluster-regression model to predict station-level usage. First, they 

clustered stations based on the types of trips the station attracted. Then, they found that station-

cluster interaction terms significantly improve the performance of the usage prediction model.   



 

50 

 

With respect to disadvantaged communities, however, previous research has considered 

income and race as two separate independent variables, and has not explicitly evaluated 

disadvantaged communities. In general, there is a relative paucity of research on bikeshare 

ridership predictions in disadvantaged areas. Cohen (2016) built a multivariate regression model 

to estimate bikeshare ridership in low-income communities. The results show that ridership is 

lower in low-income communities, and could be increased if the financial barrier is removed. 

Cohen's study (2016) did not analyze trip features, e.g., trip duration and trip spending, using trip 

data from low-income communities. The literature review also showed that ridership prediction 

models do not consider overdispersion in bikeshare ridership data. In general, there are research 

gaps regarding the magnitude of the financial barrier for bikeshare ridership in disadvantaged 

communities, and the use of appropriate models to consider the nature of travel data 

characteristics of the BSS mode.  

 

CASE STUDY CITY AND DATA DESCRIPTION 

This research selected Chicago as a case study city considering its large-scale bikeshare 

system and determination to address equity issues in bikeshare. In 2013, the Chicago Department 

of Transportation (CDOT) launched the Divvy BSS (currently with 581 stations and 6000 bikes), 

and contracted with Motivate to purchase, install, and operate the system (Motivate International 

2017a). In July of 2015, Chicago introduced the “Divvy for Everyone (D4E)” program, which 

provides affordable membership fees to qualifying residents (Motivate International 2017b). 

The Divvy bikeshare program provides their database to the public for all Divvy 

bikeshare trips from July 2013. Every trip record includes trip start day and time, trip end day 

and time, trip start station, trip end station, and rider type (subscriber or day user). A day user is a 
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rider who purchases a 24-hour pass, and a subscriber is a rider who purchases an annual 

membership. If a bikeshare trip is made by an annual member, the trip record will also include 

the member’s gender and year of birth. Since trip records cover trip duration information, the 

price for every bikeshare trip can be calculated according to the company’s pricing structure. By 

exploring this database, the total number of bikeshare trips and the average charge for trips that 

originate from a particular station can be calculated.  

This research required complementary safety data in addition to all the data described in 

Chapter 1 and Divvy’s ridership data. As indicated in multiple research papers, safety concerns 

are an important consideration when selecting travel modes and are particularly relevant when 

cycling (Griffin et al. 2008; Christie et al. 2011; Fishman et al. 2014). This study considers two 

types of safety issues: bicycle crashes with vehicles, and street crime (violent offenses). Chicago 

has an online database of crash data from 2009 to 2014 maintained by the Illinois Department of 

Transportation (DOT). The database includes bicycle and pedestrian collisions with vehicles 

resulting in injuries. Additionally, crime data from a local government portal includes incidents 

of crimes such as aggravated assault, rape, arson, battery, theft, and other violent offenses. 

Furthermore, land use can affect bicycle trip generations (Barnes and Krizek 2005; Dill and 

Voros 2007). Thus, I collected area information of recreation places such as parks and the 

National Register of Historic Places. 

 

METHODOLOGY 

To accurately estimate ridership, publicly available bikeshare trip data was used, as well 

as demographic and spatiotemporal data for every census block group in the study area. First, I 

conducted a buffer analysis for the existing bikeshare stations and summarized the data for these 
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catchment areas. Then, the bikeshare stations in disadvantaged areas were identified based on 

demographic information on the catchment areas. After assembling the required data, I estimated 

an econometric model for annual ridership for each station, and conducted the marginal effect 

and elasticity analyses. Further, I analyzed subscription rates and actual trip charges at the station 

level within different areas using historical bikeshare trip data. Figure 20 illustrates the process 

followed to conduct the analyses.   

  

 

 

Figure 20. Analysis process. 

 

Buffer Analysis 

According to previous research, the average distance for access to a bikesharing station is 

400 meters (Cohen 2016). I therefore created a 400-meter buffer around each bikesharing station 

included in this study. Since it is not possible to retrieve direct demographic data (namely, 

population, income, minority percentage, median age, household number, vehicle ownership, 

workforce, and employment rate) for the catchment area, the analyses used data for single 

stations indirectly by compiling the same data in block groups covered by a station’s buffer. If a 
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portion of a certain census block falls within the 400-meter buffer, the study assumes a uniformly 

distributed population in this census block group, and the demographic estimates are weighted 

proportionally to the amount of the block group within the buffer. For other data (e.g., the 

number of transit stations in a buffer), the process calculated the total number of places or events, 

and the total area of parks and historic places within a buffer. All of the data compiled for the 

stations’ buffers are listed in Table 11. There is one variable: percentage of young population, 

which refers to the percentage of the population aged between 20 and 35. People ages 20 to 35 

are reported to be consistently overrepresented as bikeshare users (Buck et al. 2013; Daddio and 

Mcdonald 2012; S. A. Shaheen 2012). Thus, I considered the percentage of young population 

instead of average age in the later regression analysis since two block groups with the same 

average age may have different age compositions.  

 

Table 11 Summary of key variables considered in the analyses. 

Variable Abbreviation Description Source 

Dependent 

     Total origin trips O_Trip The total number of bikeshare trips that 

originate from a bikeshare station 

Divvy bikeshare 

system operator 

     Total destination trips D_Trip The total number of bikeshare trips that 

terminate at a bikeshare station 

Divvy bikeshare 

system operator 

Independent 

System-specific factors 

Capacities Capacity The total number of docks in a bikeshare 

station  

Divvy bikeshare 

system operator 

Stations within (𝑥) meters S_500m, 

S_1km, 

S_2km, 

S_4km 

Number of bikeshare stations within (𝑥) 

meters cycling distance 

Google Distance 

API and Divvy 

bikeshare system 

operator 

Demographic factors (All these factors are summary for a buffer) 

Population Pop Total population Census 2010 

Households HH_2010 Total number of households Census 2010 

White race Pec_Whi Percentage of white race Census 2010 

Average age Ave_age The average age of population Census 2010 
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Identification of Disadvantaged Communities  

Different from the criteria to select disadvantaged communities in Chapter 1, one of the 

three criteria, the percentage of household owning less than one vehicle, is removed in this 

chapter. In this research, disadvantaged communities refer to a region where low-income 

populations and people of color live. The threshold for low-income is increased because the 

portion of bikeshare stations identified as disadvantaged areas would be extremely small if the 

Percentage of young 

population 

Pec_young Percentage of population aged between 20 

and 34 years old 

Census 2010 

Median Income Income Median household income ($ dollars) ACS 2014 

Low-vehicle households Pec_01_V Proportion of households owning or renting 

0-1 vehicle 

ACS 2014 

Labor force Labor Total population of workforce ACS 2014 

Employment rates Emp_rate Employed population divided by total 

population of work force 

ACS 2014 

Environmental factors (All these factors are summary for a buffer) 

Intersections Int_points The number of intersections in a buffer OpenStreetMap 

Walk network density WBN_des The total length of walkable paths divided by 

the area of a buffer 

OpenStreetMap 

Bike path density BN_des The total length of bike paths divided by the 

area of a buffer 

OpenStreetMap 

Transit stops Transit The number of transit (bus and railway) 

stations 

Google Place 

API 

Groceries Grocery The number of grocery stores Google Place 

API 

Schools School The number of schools Google Place 

API 

Hospitals Hospital The number of hospitals Google Place 

API 

Parks  Park_Nm The number of parks Chicago Data 

Portal 

Park areas Park_area The total areas of parks Chicago Data 

Portal 

Number of historical 

places 

Land_Nm The number of historical places Chicago Data 

Portal 

Crash Crash The number of bicycle and pedestrian 

collisions with vehicles resulting in injuries 

Illinois 

Department of 

Transportation 

(DOT) 

Crime Crime The number of crimes such as aggravated 

assault, rape, arson, battery, theft, and other 

violent offenses. 

Chicago Data 

Portal 
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threshold from Chapter 1 were used. Finally, the study identified those block groups with a 

median household income below $50,000 (200% of the federal poverty line for a household with 

four people) (U. S. Department of Health & Human Services 2016; Jiang, Ekono, and Skinner 

2016). Then, I set thresholds of low, moderate and high using the mean and standard deviation of 

the percentage of minority populations within each buffer. Table 12 shows the threshold levels 

for minority populations (Turner, Hottenstein, and Shunk 1997).  

Finally, the process identified whether a bikeshare station buffer is a disadvantage area or 

not. Thus, for example, a buffer is defined as a disadvantaged area if it satisfies: a) a median 

household annual income below $50,000 and b) percent of white race below 41.64% in Table 12. 

 

Table 12 Criteria for disadvantaged communities. 

Category Data Value 

Disadvantaged 

communities 

Income < $50,000 per year 

Percentage of white race (low) < Mean1 - 0.5×SD2 (< 41.64%) 

Other areas 
Income 

Everything else 
Percentage of white race 

Note: 1. “Mean” is the mean of percentage of white race; 

          2. “SD” stands for “Standard deviation”. 

 

Bikeshare Ridership Estimation 

Bikeshare station ridership is the count of actual trips generated in a station. In statistics, 

count regression models (e.g., Poisson and binomial) are usually applied to model response 

variables that are counts. Poisson models, for instance, have a strong assumption that the mean 

should be equal to the variance. This assumption might present a limitation considering that any 

new predictor into a model could change the variance (Agresti 2013). Alternatively, and 

considering the potential for over dispersion in origin-destination trip matrices, I also evaluated 
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negative binomial regression models. This study analyzed ridership for trip origins and 

destinations independently.  

Marginal Effect and Elasticity 

Marginal effect, also known as average marginal effect, is an index to measure the 

change of a dependent variable given a unit change in a specific independent variable (Hilbe 

2011). For the count models, considering the different attributes of continuous and binary 

variables, I estimated marginal effects for them separately. For continuous variables, the 

marginal effect for variable 𝑥𝑘 is: 
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where 𝑁 is the sample size. 

The marginal effect of a specific variable includes two components: the average of the 

expected value of the dependent variable (𝑦̅) and the estimation for the estimated coefficient 

corresponding to this variable (𝛽𝑘̂). This is different from ordinary least squares regression in 

which marginal effects are identical to coefficients. When the independent variable is a binary 

predictor, marginal effects are referred to as the average change in the dependent variable as a 

binary variable changes from zero to one. The formulation is: 
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where 𝛽′ and 𝛽𝑏 are the coefficients for continuous and binary variables, respectively (Hilbe, 

2011).  

To further understand the influence of a variable, I measured the elasticity of every 

variable. In contrast to the preceding marginal effects related to absolute changes, elasticity is 

related to the percentage of change of the dependent and independent variables. It is represented 

as:  

 

 
𝐸𝑘 = 𝑀𝑥𝑘

×
𝑥̅

𝑦̅
  (4) 

 

where 𝑀𝑥𝑘
 is the interpretation of marginal effects defined earlier. 

Station-Level Analysis 

Membership and usage fees are important barriers for disadvantaged communities to 

access and use bikeshare systems (McNeil, Dill, MacArthur, Broach, et al. 2017; Howland et al. 

2017). As mentioned, every trip record distinguishes whether the user is an annual member or a 

day user. This study calculated the proportion of trips by subscribers for every bikeshare station, 

and then associated its subscription rate with demographic information for its catchment area. In 

this way, I studied the potential for financial barriers faced by disadvantaged communities. 

For the usage fee of a single trip, this study used Divvy’s price scheme (Table 13) to 

estimate each trip’s cost with the available trip duration information. Both annual members and 

24-hour pass holders (hereinafter called “day users”) can enjoy unlimited 30-minute free rides. 

However, after the first 30 minutes of each trip, the pricing scheme differs between an annual 

member and a day user. For every additional 30-minute period, a day user has to pay more than 
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an annual member does, which is set as an incentive for more annual subscribers. Estimating the 

trip costs, and trying to allocate a portion of the subscription or the 24-hour pass fees to each trip 

was challenging because Divvy does not assign a unique ID to subscribers or day users. For trips 

by subscribers, the gender and birth year information is not sufficient to identify individual 

subscribers. For these reasons, it is not possible to know which trips are taken by the same 

subscriber or day user, or to estimate the annual expenditures for a specific individual (subscriber 

or day user). Considering these limitations in the data, I assigned a bikeshare trip to the station it 

starts from or terminates at, and estimated the average trip time and expenditure on a single trip 

for subscribers or day users at the bikeshare station level (for both origin trips and destination 

trips). After estimating the average trip time and costs, I associated the time and costs with the 

demographic information in the buffer of that station. Interesting findings are reflected through 

comparisons of the average time and costs between ridership generated (produced or attracted) 

from stations in disadvantaged and other areas.  

 

Table 13 Price scheme (in dollars) for Divvy in 2016. 

Trip duration / minutes Annual member Day pass user 

Base charge 99 per year 9.95 per day 

0-30 0 0 

31-60 1.5 2 

61-90  4.5 6 

91 and more 6 per 30 minutes 8 per 30 minutes 

 

RESULTS 

This section shows the results of the empirical analyses in Chicago following the 

aforementioned methodology. Firstly, I mapped the spatial distribution of bikeshare stations 

identified in disadvantaged communities. Then, I estimated the statistical regression model, and 
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conducted the marginal effect and elasticity analyses. Finally, I analyzed bikeshare trip 

expenditures from stations in disadvantaged communities. 

Bikeshare Station Distribution 

This sample data has 475 observations (based on the available ridership data), which are 

buffers of 475 bikeshare stations. Using the criteria identifying disadvantaged communities, I 

identified 99 out of 475 station buffers as disadvantaged communities. Examining the 

distribution of these stations, Figure 21 shows that the majority concentrate in western and 

southern Chicago, where residents tend to be low-income and minority populations. Note that 

none of these stations (marked with red points in Figure 21) are in the central business district. 
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Figure 21. Distribution of bikeshare stations in Chicago. 
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Bikesharing Ridership Estimation 

The descriptive statistics for all variables compiled for station buffers are listed in Table 

14. Since the density of the bikeshare stations in Chicago’s downtown area is significantly 

greater than in suburban areas, some buffer areas overlap. However, there are no two buffer areas 

covering exactly the same block groups. Additionally, the statistic distribution of population or 

average age in buffer areas (Figure 22) appears to be normally skewed or normally distributed. 

Thus, the overlap of buffer data does not affect the effectiveness of the following analyses.  

 

Table 14 Descriptive statistics for all variables.  

Variable Min. Median Mean Max. Variance 

Total origin trips 15 4889 7464 89248 77690229 

Total destination trips 17 4822 7464 98590 81187422 

Capacities 11 15 17.69 47 30.48 

Stations within 500 meters 1 1 1.92 8 1.60 

Stations within 1k meters 1 4 4.51 20 13.81 

Stations within 2k meters 1 14 16.99 52 122.95 

Stations within 4k meters 4 56 53.61 132 718.32 

Population 301 3875 4105.4 12872 5022957 

Households 104 1722 1994.3 8714 2140887 

White race (%) 0.38 59.54 54.38 93.34 649.08 

Average age 21.2 32.36 33.07 51.02 18.71 

Percentage of young 

population (%) 
14.82 37.75 36.91 70.09 129.5 

Population aged 5-9 3 130 141 775 11161 

Population aged 10-14 3 99 122 679 9884 

Population aged 15-19 1 149 187 1391 28436 

Population aged 20-24 13 342 433 1967 108312 

Population aged 25-34 59 1008 1161 4647 722303 

Population aged 35-44 29 571 578 1705 104523 

Population aged 45-54 14 372 424 1506 65116 

Population aged 55-64 11 282 347 1676 65971 

Population aged 65-74 9 148 198 1416 35551 

Population aged 75-84 3 78 107 762 11908 

Population aged 85-up 0 28 44 367 2627 
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Figure 22. Frequency distribution of population and average age in buffer areas. 

 

After compiling data for Chicago, I estimated the correlation matrix of all the numerical 

variables. Figure 23 shows that there are several variable clusters within which variables are 

Median Income ($ per year) 12140 66969 66904 147407 840623667 

Low-vehicle households (%) 49.75 80.02 79.73 97.66 105.76 

Labor force 146 2431 2608 9267 2796727 

Employment rates 46.73 92.35 89.86 98.54 54.13 

Intersections 7 105 171.3 1513 40064 

Walk network density (meter 

per 10000 square meters) 
29.7 121.2 128.6 400.2 2307.23 

Bike path density (meter per 

10000 square meters) 
0 53.22 59.27 195.97 1397.01 

Transit stops 0 9 10.99 44 53.27 

Groceries 0 2 2.48 15 6.80 

Schools 0 5 6.41 60 59.02 

Hospitals 0 1 4.36 84 122.28 

Parks  0 1 1.33 5 1.09 

Park areas (square meter) 0 5126.9 33723.2 406487.0 4326573869 

Number of historical places 0 1 2.49 29 16.76 

Crash 3 67 105.4 469 8577.58 

Crime 10 309 483.5 4093 344148.8 
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highly correlated. For example, population is highly correlated with household number and 

employment levels. Further, an area with a high percentage of white population tends to be a 

wealthy area. 

 

 

Figure 23. Correlation matrix of all numerical variables (abbreviations as shown in Table 11). 

 

During the model estimation process, I controlled for collinearity, removed statistically 

insignificant variables, and compared the model’s Akaike information criterion (AIC) index to 
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develop a better model that represents bikeshare ridership. Note that the capacity of a station may 

be increased or decreased because it is a dynamic decision based on observed bikeshare demand 

by the systems’ operators. Thus, in the final regression, capacity is dropped out. There are 

several variables that are generally thought to be correlated with trip demand but are not included 

in the final model. For example, population is highly correlated with labor number and is not 

selected.   

Since I have two dependent variables (productions and attractions) to estimate, Table 15 

and Table 16 show the regression results for the two models represented. I conducted the 

goodness of fit test. The deviance of the NB model (515) is smaller than the 5% critical value 

(517) for a chi-squared distribution (degree of freedom = 466). However, the deviance for the 

Poisson model is significantly greater than this critical value. Thus, the NB model is better in 

term of fitting the ridership data. Besides, Table 15 shows that the Negative Binomial (NB) 

model (with AIC = 8899) outperforms the Poisson model (AIC = 9740). The log likelihood value 

of the NB model (-4439) is also greater than the Poisson model (-4860). Additionally, the 

overdispersion parameter in the NB model is 1.917, which indicates that the variance is 

significantly different from the mean in the sample data. Moreover, among all of the variables in 

the NB model, labor number, bike path density, park area, transit station number, percentage of 

young population, and number of bikeshare stations within 500 meters are significantly 

important for increasing the number of trips. However, the number of trips will decrease if a 

bikeshare station is located in a disadvantaged community. Consistent with previous research, I 

found the percentage of young population to be statistically significant in predicting bikeshare 

ridership. McNeil, Dill, MacArthur, and Broach (2017) found that bikeshare systems are more 

popular among younger populations. The negative coefficient of station area types 
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(disadvantaged area or not) proves the influence of existing barriers to disadvantaged 

communities enjoying bikeshare.  

 

Table 15 Annual bikeshare ridership estimation models for trip productions.  

Variables 
Poisson model Negative binomial model 

Coefficient Significance Coefficient Significance 

Constant −1.550 × 104 ** −8.315 × 10−2  

Labor number 3.886 × 10−1 ∙ 5.455 × 10−5 * 

Employment rate 9.658 × 101  7.107 × 10−2 *** 

Bike path density 4.959 × 101 *** 5.212 × 10−3 *** 

Park areas 2.672 × 10−2 *** 4.473 × 10−6 *** 

Stations within 500 m 5.361 × 102  8.750 × 10−2 * 

Percentage of young population 1.744 × 102 *** 3.298 × 10−2 *** 

Number of transit stops 2.109 × 102 *** 2.045 × 10−2 *** 

Disadvantaged communities −1.696 × 103  −3.082 × 10−1 ** 

Overdispersion parameter 1  1.917  

Log-likelihood -4860  -4439  

AIC 9740  8899  

Deviance 2.14 × 1010  515  

   Significance: 0.0: ***; 0.001: **; 0.01: *; 0.05: ∙. Number of observations: 475. 

 

The regression results for trip attractions (Table 16) also show that the NB model is better 

than the Poisson model considering the AIC index (8909 vs. 9784), the log likelihood value (-

4445 vs. -4882), and an overdispersion parameter of 1.8791.879. All variables--except whether a 

station is in a disadvantaged--are positively related to the number of attracted trips. Considering 

the overdispersion phenomenon and a better AIC index, I selected the NB models for production 

and attraction trips for further marginal effects and elasticity analyses. Also, the coefficients of 

all dependent variables are similar and consistent between the two models.  
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Table 16 Annual bikeshare ridership estimation models for trip attractions. 

Variables 
Poisson model Negative binomial model 

Coefficient Significance Coefficient Significance 

Constant −1.626 × 104 ** −3.528 × 10−1  

Labor number 3.776 × 10−1  5.110 × 10−5 * 

Employment rate 1.079 × 102  7.471 × 10−2 *** 

Bike path density 4.766 × 101 *** 5.122 × 10−3 *** 

Park areas 2.739 × 10−2 *** 4.415 × 10−6 *** 

Station within 500 m 3.433 × 102  7.594 × 10−2 * 

Percentage of young population 1.760 × 102 *** 3.200 × 10−2 *** 

Number of transit stops  2.273 × 102 *** 2.217 × 10−2 *** 

Disadvantaged communities −1.704 × 103  −2.948 × 10−1 * 

Overdispersion parameter 1  1.879  

Log-likelihood -4882  -4445  

AIC 9784  8909  

Deviance 2.35 × 1010  516  

   Significance: 0.0: ***; 0.001: **; 0.01: *; 0.05: ∙. Number of observations: 475. 

 

Marginal Effect and Elasticity 

To gain a deeper understanding of the influence of these variables, I conducted marginal 

effects and elasticity analyses for the resulting NB models (Table 17 and Table 18). From the 

perspective of marginal effects, the change of area type from disadvantaged to other will increase 

annual trips by 2163 on average for productions, and 2080 for attractions. The second greatest 

impact is from number of bikeshare stations within 500 meters. If the number of bikeshare 

stations within 500 meters increases by one, there will be a total of 704/611 additional bikeshare 

trips originating or terminating there. Among the rest of the variables, employment rate can, to a 

certain extent, significantly affect the number of bikeshare trips.  

In terms of elasticities, among the other variables, employment rate has the highest 

impact. One percent increase in employment rate increases total bikeshare trips by around seven 

percent (6.89% and 7.23%). Among the rest of the variables, percentage of young population has 

the second biggest elasticity. A 1% increase in percentage of young population will cause a 

1.18%/1.14% increase in total number of bikeshare trip productions or attractions. Although 
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there is no estimated elasticity for the binary variables identifying disadvantaged communities, 

considering the marginal effect (all other variables remaining constant), a change of 2163 or 

2080 is approximately a 29.0% or 27.9% difference when compared to the average of 7464 

annual trips (the averages of trip attraction and production are the same) across all stations. 

 

Table 17 Marginal effects and elasticities of the NB model for trip productions.   

Variable Marginal effects Elasticity (%) 

Labor number 0.44 0.24 

Employment rate 572 6.89 

Bike path densities 42 0.33 

Park areas 0.04 0.16 

Bikeshare stations within 500 meters 704 0.18 

Percentage of young population 265 1.18 

Number of transits 165 0.24 

Area type (1: disadvantaged areas; 0: other areas) -2163 - 

 

Table 18 Marginal effects and elasticities of the NB model for trip attractions. 

Variable Marginal effects Elasticity (%) 

Labor number 0.41 0.23 

Employment rate 601 7.23 

Bike path densities 41 0.33 

Park areas 0.04 0.16 

Bikeshare stations within 500 meters 611 0.16 

Percentage of young population 257 1.14 

Number of transits 178 0.26 

Area type (1: disadvantaged areas; 0: other areas) -2080 - 

 

Subscription Rate and Trip Expenditures by Demographic Information 

Figure 24 shows the subscription rates of trips at the station level. The mean proportion 

of trips made by subscribers is lower in disadvantaged communities than in other areas. To 

further verify this finding, I conducted a t-test to identify if the difference of the mean 

proportions between disadvantaged areas and other areas is statistically significant. The p-value 

of the t-test is 0.025, which is less than the significant level (alpha = 0.05). I concluded that the 
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proportion of trips by annual members in disadvantaged areas is significantly less than that of 

other areas. Previous research has also proved that the odds of membership is higher in wealthy 

areas (Fishman et al. 2015). Note that, among many barriers, a 99-dollar membership fee is a 

non-trivial barrier for low-income users. To address this financial barrier, the aforementioned 

D4E program in Chicago has helped more people of color become bikeshare members 

(Greenfield 2018). Since I have no access to the demographic information of Divvy’s 

subscribers, this study is unable to compare changes, if any, in the demographic profile of users 

before and after the D4E program. However, Greenfield (2018) reported that D4E membership is 

much more diverse than standard Divvy membership. 

 

 

Figure 24. Boxplot of the proportion of trips made by subscribers. 

 

Additionally, I analyzed the average trip time and trip costs for each station to understand 

bikeshare activities in disadvantaged and other areas. Table 19 and Table 20 show descriptive 
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statistics (e.g., mean and median) for average trip time and trip cost per station. Since there are 

trips originated from and terminated at one station, I analyzed the average trip time and trip cost 

for origin trips and destination trips, respectively. As mentioned in the previous section, because 

of lack of data, I could not allocate the annual membership fee or daily fee across the number of 

trips a user makes. Consequently, the study estimated average trip costs for every bikeshare 

station without considering the annual membership fees or daily fees. When calculating the 

average trip time or cost for each station, I distinguished trips produced or attracted at a station 

and separated trips by subscribers and day users. 

Table 19 shows the differences between subscribers and day users, with the former 

making shorter trips, possibly because of the differences in the use fee scheme (Table 13). 

However, the average trip time for day users is at least twice that of subscribers. Comparing trip 

time for subscribers in disadvantaged and other areas, residents in disadvantaged areas are likely 

to make a longer (time) trips, consequently, they tend to spend more on bikeshare trips than users 

in other areas.  

 

Table 19 Statistics for average trip time (in minutes) per station. 

Trip type Station type User type Min. 1st quantile Median Mean 3rd quantile Max. 

trip 

productions 
Disadvantaged 

Subscriber1 6.72 
11.63 13.16 13.98 15.98 26.78 

Day user2 13.41 23.17 27.55 28.25 32.16 51.85 

Others 
Subscriber 6.87 10.44 11.56 12.06 13.36 20.50 

Day user 16.69 22.49 24.36 25.31 27.35 48.65 

trip 

attractions Disadvantaged 
Subscriber 7.14 11.98 13.32 14.21 15.84 28.03 

Day user 16.71 22.89 27.97 29.05 33.70 58.63 

Others 
Subscriber 7.20 10.36 11.80 12.08 13.50 22.00 

Day user 18.22 21.89 24.03 24.95 27.46 45.01 

 Notes: 1. The expenditure for subscribers does not include the one-time 9.95-dollar charge; 

            2. The expenditure for day users does not include the annual membership fee. 
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Table 20 shows that the average expenditure for subscribers is less than one dollar in all 

areas. Based on the price scheme in Table 13 and the data in Table 20, most subscribers ride for 

less than 30 minutes. Additionally, subscribers in disadvantaged communities spend 

approximately twice as much per trip as subscribers in other areas (0.08 vs. 0.04 dollars for 

origin trip and 0.09 vs. 0.04 for destination trips) from the perspective of median value. The 

maximum of average trip expenditure for subscribers is 0.99 dollars in disadvantaged 

communities for trip productions, which is almost three times that (0.34 dollars) of other areas. 

Given the price scheme, trip costs, to some extent, reflect trip distances. Thus, users in 

disadvantaged communities are more likely to make longer bikeshare trips than users from other 

areas. Accessibility to schools, hospitals, jobs, and other locations may explain the longer 

distances that users from these communities experience. McNeil, Dill, MacArthur, and Broach 

(2017)’s survey study shows that using bikeshare can save money on transportation overall, and 

could potentially reduce spending on health care because of frequent exercise from bikeshare 

use. However, accessibility to these and other critical locations is an equity issue experienced in 

many cities. Another potential reason to explain the higher average trip costs is a lack of a 

thorough understanding of the price scheme. Residents from disadvantaged communities tend to 

be low-frequency users, who may not reflect enough time to understand the fare structure in 

Table 13. There could be other reasons that explain the longer trips, though there is a lack of 

information about the exact trip purpose. For instance, the results from the NB model and the 

expenditures hint that subscribers in disadvantaged communities might use bikeshare to 

commute to work or for other work-related purposes. In general, understanding this behavior 

requires additional information and research.  
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Table 20 Statistics for average trip expenditures (in dollars) per station. 

Trip type Station type User type Min. 1st quantile Median Mean 3rd quantile Max. 

Trip 

productions 
Disadvantaged 

Subscriber1 0.00 
0.04 0.08 0.14 0.18 0.99 

Day user2 0.08 0.66 1.10 1.46 1.98 5.55 

Others 
Subscriber 0.01 0.03 0.04 0.05 0.06 0.34 

Day user 0.00 0.72 0.93 1.04 1.25 4.44 

Trip 

attractions Disadvantaged 
Subscriber 0.00 0.04 0.09 0.18 0.15 1.17 

Day user 0.17 0.72 1.38 1.59 2.10 6.32 

Others 
Subscriber 0.01 0.03 0.04 0.05 0.07 0.58 

Day user 0.18 0.69 0.94 1.03 1.29 3.66 

Notes: 1. The expenditure for subscribers does not include the one-time 9.95-dollar charge; 

            2. The expenditure for day users does not include the annual membership fee. 

 

 

When comparing the expenditures of non-subscribers, casual users in disadvantaged 

communities still spend more on bikeshare trips, but the difference is not significant. One reason 

for this may be that the proportion of trips by day users is relatively small (20% on average), 

which makes casual trip length easily affected by random factors (e.g., weather). On the other 

hand, the trip purposes of casual users (very likely to be tourists) vary more than those of 

subscribers. Diverse trip purposes result in a wide range of bikeshare trip lengths.  

 

DISCUSSION 

In the regression model for total bikeshare trips, I mentioned that employment rate has 

the greatest elasticity. To further analyze the employment influence on bikeshare ridership, this 

study compared trip productions or trip attractions with workers living and working in each area. 

The number of workers living nearby refers to the total number of workers who are supposed to 

live in the buffer of every station, while the number of workers working nearby refers to the total 

number of workers who are estimated to work in the buffer of every bikeshare station. All of 

these data related to workers are from the LEHD database, as described in the section above.  
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Overall, bikeshare demands are greater in an area with either more job opportunities or 

employed labor force. However, Figure 25 to Figure 28 show that most disadvantaged areas have 

a deficit in job opportunities (i.e., more workers live in the area than work in the area) regardless 

of the kind of jobs. Thus, users in disadvantaged areas may have to reach job locations further 

away from their residential areas, as compared to residents of other areas.  

 

 

Figure 25. Number of trip productions against job data by sectors. 
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Figure 26. Number of trip productions against job data by monthly income. 

 

 

Figure 27. Number of trip attractions against job data by sectors. 
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Figure 28. Number of trip attractions against job data by monthly income. 

 

For stations in disadvantaged areas, I focused on the relationship between worker resident 

population and bikeshare demand. In areas with fewer than 2000 employees (2000 is set based 

on the most frequent employee number in disadvantaged area buffers), Figure 29 shows the 

relation between workers living nearby and trip productions (or attractions). The total number of 

trips increases with the number of workers living near a station. However, disadvantaged areas 

do not have sufficient employed labor force to support a peak-level trip demand.   
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Figure 29. Number of trip productions or attractions against number of workers. 

 

Examining employment data by industry sector reveals that there are fewer workers 

living in disadvantaged areas no matter what kind of jobs. However, the gap is smaller for 

workers in food producing-related industries. Considering job data by earnings (Figure 26 and 

Figure 28), areas (disadvantaged or other) with more better-paid workers are more likely to 

generate a higher bikeshare demand. However, residents near the buffer areas of a disadvantaged 

bikeshare station are less likely to have high-paying jobs. Overall, the number of workers living 

in a disadvantaged area will positively influence the bikeshare demand there. Considering the 

previous marginal effect and elasticity analyses, this explains why employment rate is so 

important in determining bikeshare demand, especially in disadvantaged areas given the limited 

job opportunities there. 
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CONCLUSIONS 

The work estimates bikeshare trip demand based on a number of key system and socio-

economic variables. The estimated NB model provides insight into the impact of socio-economic 

variables, especially for individuals in disadvantaged communities, that affect their trip 

productions and attractions. Further, the marginal effect of bikeshare location is the greatest, 

which means that if a bikeshare station is located in a disadvantaged community, the number of 

annual trips at that station are noticeably lower relative to stations in affluent and white 

communities. As shown by our regression model, employment rate has a significant marginal 

effect, and the greatest elasticity to improve ridership. More importantly, three main findings 

emerge from the analysis of the Divvy bikeshare trip data. First, most bikeshare users tend to 

make trips of less than 30 minutes, regardless of whether the trip is located in a disadvantaged or 

other area. The second result is that the rate of trips made by subscribers is smaller in 

disadvantaged areas than in other areas, which may result from multiple barriers that discourage 

low-income individuals from securing memberships. The last, but most important conclusion, is 

that residents in disadvantaged areas make much longer trips than residents in other areas, if they 

are already subscribers.  

Our research provides quantitative confirmation of the existence of equity problems in 

the bikeshare industry. Clearly not enough bikeshare stations or services are provided in 

disadvantaged areas. Solving the equity problems in bikeshare systems should be a cooperative 

goal of for-profit companies and local governments. For-profit companies will tend to cover 

wealthier and highly-educated populations to generate more revenue. Local governments should 

offer incentives to companies that provide services in disadvantaged communities. For example, 
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local municipalities could reduce taxes for those bikeshare companies that site more stations in 

low-income communities, or offer more affordable membership fees (e.g., $5 annual fee in 

Chicago). Consistent with the findings from other research, this work shows that there are 

financial barriers to disadvantaged communities accessing and using bikeshare systems. 

However, after joining as annual members, disadvantaged populations tend to rely more on 

bikeshare and enjoy real benefits, such as saving money on transport.   

Inspired by this research, I would like to offer three suggestions for future policies 

designed to develop municipal bikeshare systems. First, when a city wants to have a socially 

inclusive bikeshare system, it needs to cooperate with the private-sector operator(s) to design a 

metric by which to measure whether the system has included more diverse groups or 

populations. Second, low membership fees, like the “D4E” program, are a practical and effective 

way to encourage more people from disadvantaged communities to participate. As more and 

more cities are introducing their own systems, I strongly recommend the use of early-stage 

promotions of reduced membership fees for low-income and other traditionally disadvantaged 

populations. These promotions, and the bikeshare systems generally, will be more successful if a 

robust community is engaged. Community outreach is more efficient than online advertisement 

for disadvantaged populations given varied access to smartphones or other technical devices. 

Based on Divvy’s price framework, subscribers will have 30-minute or shorter trips for free. The 

historical data show that the maximum trip time for subscribers in disadvantaged communities is 

very close to 30 minutes, which demonstrates that those populations try to make the most of this 

subscription benefit without any marginal cost. Another reason for longer trip times in 

disadvantaged areas is that users there may have limited other reliable modes for travel. A study 

in Lyon (France) shows that the majority of bikeshare members are not dependent on public 



 

78 

 

transport originally. On the contrary, they mostly have multiple mode choices in their everyday 

travel (Raux, Zoubir, and Geyik 2017). This insight may lead to another suggestion of extending 

the time limit for free rides for subscribers from disadvantaged communities. In these 

disadvantaged areas, transit services are not frequent enough to cover the potential demand 

(Giuliano 2005; Ricciardi, Xia, and Currie 2015). The low reliability of transit service 

necessitates that disadvantaged populations spend more time waiting and scheduling. However, 

the availability of bikeshare systems and longer free rides may make it possible for more direct 

trips to destinations, or connections to micro transit, or areas with more frequent transit services. 

This potential benefit needs further deep study to be verified. 

This research has some limitations and areas for improvements. The main disadvantage 

of the bikeshare trip dataset used in this work is that it does not clarify the relationship between 

bikeshare trips and specific users. If that information were available, this study could accurately 

measure average trip costs by distributing the membership fee or daily fee across the number of 

trips. Moreover, more detailed analyses could identify additional impacts for disadvantaged 

communities. The demographic information of users is also unclear. More detailed demographic 

information would be valuable, as the analyses assume that users are likely to live near the trip 

start station and share characteristics with the residents in the associated buffer. With more 

detailed demographic information, the analyses could provide more insights into how residents 

from disadvantaged communities do, and potentially could, use bikeshare to make their lives 

more convenient.  
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CHAPTER 4: AN ENTROPY-BASED MODEL FOR BIKESHARE TRIP 

DISTRIBUTION WITH EQUITY INSIGHTS 

 

INTRODUCTION 

Bikeshare has become more and more prevalent around the world. The total number of 

bikeshare trips keeps increasing year after year (NACTO 2018). Many cities have joined in the 

trend to introduce their own bikeshare systems. Currently, there are two main types of bikeshare 

systems in the US. The dock-based system currently dominates, which requires a user to pick up 

and return a bike to a physical station. Compared to the fixed location bike service, the newer 

dockless bikeshare system has shown the potential to replace the dock-based one. More and 

more cities are open to this new type of system and have released a certain number of permits to 

selected bikeshare operators, including JUMP Bikes, LimeBike, and ofo, among many others. 

As the public is attracted to this new travel mode, it has attracted more and more research 

attention as well. Several researchers have conducted surveys of bikeshare users and their trip 

purposes (Buck et al. 2013; McNeil, Dill, MacArthur, and Broach 2017). These studies have 

addressed equity issues in bikeshare and have shown that the majority of current bikeshare users 

are white, high-income, and well-educated. There exists a bikeshare service gap for traditionally 

disadvantaged populations and traditional disadvantaged communities. In addition to these 

survey-based studies, researchers have developed models for estimating ridership for bikeshare 

trips (Froehlich, Neumann, and Oliver 2009; Rixey 2013; Froehlich, Neumann, and Oliver 

2009). Research on destination choices for bikeshare is another area which has an important 

practical application (Faghih-Imani and Eluru 2015).  
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However, there is limited information about trip distance and trip time distribution for 

bikeshare trips, especially for disadvantaged areas. How long bikeshare users spend on trips and 

the differences in spending among various users have not been deeply analyzed. This kind of 

information is important for both bikeshare operators and local governments. With an accurate 

picture of trip time distribution, a bikeshare planner can estimate destination choices with more 

confidence. Users’ behaviors in trip spending, especially for disadvantaged areas, can help 

operators to design more suitable policies for disadvantaged users to reduce some of the barriers 

they face. This chapter will introduce a destination competing model to estimate destination 

choices and analyze spatial patterns of parameters in this model. This research uncovers that 

accessibility improvements especially job opportunities, are an important incentive for more 

bikeshare trips in disadvantaged areas. Annual members from disadvantaged areas are more 

likely to travel longer distance to other areas in order to reach more services. However, these 

disadvantaged population are more sensitive to extra change after a free ride and that marginal 

cost for a bikeshare trip will eventually restrict their flexibility in using bikeshare services. 

 

LITERATURE REVIEW 

Destination choice models are a subject of frequent debate among researchers and 

practitioners. There are a plenty of studies analyzing destination choices for personal vehicle and 

transit. The fast development of bikeshare leaves a vast research gap for people to better 

understand how this share economic makes biking trips more attractive for people. Among many 

equity researches in bikeshare, destination choice has not emerged as a hot topic for bikeshare 

users in disadvantaged areas.  
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The most well-known destination choice model is a traditional gravity model (Wilson 

2013). The gravity model comes with many different forms, to name a few, doubly constrained 

distribution model, self-deterrent distribution model with quadratic costs, and distribution model 

based on competing destinations (de Grange, Fernández, and de Cea 2010). The doubly 

constrained distribution model is the traditional form of gravity model established by Wilson 

(Wilson 2013). This traditional form is developed based on the idea of minimization of entropy 

in transportation systems. More complicated than the traditional gravity model is the competing 

destination model, which includes the attractiveness and accessibilities of destinations (de 

Grange, Fernández, and de Cea 2010). A study also proves the competing destination model 

performs better than the traditional gravity model in a state-to-state migration study (Hu and 

Pooler 2002). In their model, they estimated distance decay parameters for every origination and 

analyzed the spatiotemporal pattern of distance decay estimates. 

Destination choice research directly related to bikeshare is limited. After examining the 

paucity of research, there are two main approaches based either on statistical methods (see, for 

example, (Faghih-Imani and Eluru 2015, Kumar et al. 2016)) or on network model from 

computer science fields (Hu et al. 2017, Maystre and Grossglauser 2017). An example of the 

statistical model to estimation destination choice is a research based on Chicago Divvy bikeshare 

system. Other than improving on conventional model, they applied a multinomial logit model to 

estimate destination choice with bicycle infrastructure variables, land-use and built 

environmental characteristics, and trip attributes (Faghih-Imani and Eluru 2015). In their 

regression model, the trip attribute does not cover trip price that is a crucial barrier for low-

income populations. For research based on models from computer science fields, many studies 

touch the edge of destination choice when dealing with bikeshare rebalance or bikeshare station 
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ridership estimation. For example, many bikeshare rebalance studies analyze destination choices 

for bikeshare system (Maystre and Grossglauser 2017, Hu et al. 2017). A researcher group 

applied the idea of "PageRanking", which comes from computer science to measure the 

importance of a website based on its relationship with other websites (Bryan and Leise 2006). 

They estimated the activeness of every station based on a station's circumstances and its 

relationship with surrounding stations. This PageRanking algorithm is a novel idea to measure 

station activeness from an aggregate view.  

All of those models mentioned earlier have not focused on low-income or disadvantaged 

populations. There is limited information about how these populations make their bikeshare trips 

and how they choose their destinations. These questions are imperative for bikeshare strategists 

and developers who are attempting to eliminate barriers for low-income and disadvantaged 

communities. 

 

CASE STUDY CITY AND DATA DESCRIPTION 

This research selected Chicago as a case study city as well. This section presents 

bikeshare trip data applied in the calibration of the competing destination model and 

demographic data for spatiotemporal analysis. The Divvy bikeshare in Chicago releases their 

database for all bikeshare trips. Every trip record includes trip start day and time, trip end day 

and time, trip start station, trip end station, and rider type (annual member or 24-hour pass user) 

from July 2013 to June 2018. Since trip records cover trip duration information, the price for 

every bikeshare trip can be calculated according to their pricing structure. However, the 

historical data does not include the trip distance information. To fill this missing information, I 

applied Google distance application programming interface (API) to calculated distance and 
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estimated trip time by bike between every OD pair. Exploring this database, I can also calculate 

the real origin-destination matrix for the Divvy bikeshare system. This data will serve as true 

data to calibrate our competing destination model. I compiled demographic data from multiple 

resources including Census 2010 and American Community Survey (ACS) data. The 

demographic data in this study refer to race and income, which are used to classified if bikeshare 

station is located in disadvantaged area or not. 

 

METHODOLOGY 

The concept of Entropy in urban transport modelling was introduced by Wilson (2013). 

Based on the entropy-maximum theory, a classical gravity modal was developed to estimate trip 

distributions. Until now, several enhanced gravity models have been developed (de Grange, 

Fernández, and de Cea 2010). This paper now presents a consolidated distribution model to 

model bikeshare trip distribution, which brings together the important features of both 

destination station and bikeshare trips. After stating the construction process of the entropy-

based competing-destination model, an equivalent logit modal will be introduced to calibration 

the model. 

 

Entropy-Based Competing-Destination Model  

First, considering the most important characteristics of entropy models described in 

literature review chapter, a multi-objective problem is developed: 
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 max{𝑇𝑖𝑗}  𝐹1 = ∑ 𝑇𝑖𝑗(𝑙𝑛 𝑇𝑖𝑗 − 1)

𝑖𝑗

 (5) 

 min{𝑇𝑖𝑗} 𝐹2 = ∑ 𝑇𝑖𝑗𝐶𝑖𝑗

𝑖𝑗

 (6) 

 max{𝑇𝑖𝑗}  𝐹3 = ∑ 𝑇𝑖𝑗 𝑙𝑛 𝑆𝑖𝑗

𝑖𝑗

 (7) 

s.t ∑ 𝑇𝑖𝑗 = 𝑂𝑖

𝑗

  ∀𝑖   (𝜇𝑖) (8) 

∑ 𝑇𝑖𝑗 = 𝐷𝑗

𝑖

   ∀𝑗  (𝛾𝑗) (9) 

        

In Equation (5), 𝑇𝑖𝑗 is the total number of trips between origin 𝑖 and 𝑗. The Equation (5) is 

a simplified version of maximizing entropy function using Stirling’s short approximation (ln𝑥! =

𝑥 ln 𝑥 − 𝑥). In Equation (6), 𝐶𝑖𝑗 is the travel distance or travel time between origin 𝑖 and 

destination 𝑗. In Equation (7), 𝑆𝑖𝑗 is an index to measure the attractiveness of travelling between 

origin 𝑖 and destination 𝑗, which takes the form of: 

 

 
𝑆𝑖𝑗 =  ∑ ∆𝑂𝑝𝑝𝑘

𝑤

𝑘=1

× 𝑊𝑒𝑖𝑔ℎ𝑡𝑘 (10)  

 

where ∆𝑂𝑝𝑝𝑘 is the difference of opportunity 𝑘 between origin 𝑖 and destination 𝑗, 𝑊𝑒𝑖𝑔ℎ𝑡𝑘 is 

the weight for Opportunity 𝑘 since some opportunities (e.g., jobs) may be more important than 

others. A previous research (Niemeier and Qian 2018) has proved that bikeshare systems can 
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bring significant accessibility improvement for disadvantaged communities. Thus, I want to 

maximize accessibility improvement by all bikeshare trips. 

The three objective functions can be merged into one substitute optimization problem as 

follows: 

 

 

max 𝐹4 = ∑ 𝑇𝑖𝑗(𝑙𝑛 𝑇𝑖𝑗 −1)

𝑖𝑗

− 𝛽 (∑ 𝑇𝑖𝑗

𝑖𝑗

𝐶𝑖𝑗) + 𝜌 ∑ 𝑇𝑖𝑗

𝑖𝑗

𝑙𝑛 𝑆𝑖𝑗 (11) 

 

In order to obtain the set of 𝑇𝑖𝑗 which maximizes the objective function in Equation (11) 

subject to constraints (8) and (9), the Lagrange ℒ has to be maximized.  

 

 

ℒ = ∑ 𝑇𝑖𝑗(𝑙𝑛 𝑇𝑖𝑗 −1)

𝑖𝑗

− 𝛽 (∑ 𝑇𝑖𝑗

𝑖𝑗

𝐶𝑖𝑗) + 𝜌 ∑ 𝑇𝑖𝑗

𝑖𝑗

𝑙𝑛 𝑆𝑖𝑗

+ ∑ 𝜇𝑖(𝑂𝑖 − ∑ 𝑇𝑖𝑗

𝑗

)

𝑖

+ ∑ 𝛾𝑗(𝐷𝑗 − ∑ 𝑇𝑖𝑗

𝑖

)

𝑗

 

(12) 

 

By solving this Lagrange function (12) with respect to 𝑇𝑖𝑗, we will obtain the following 

functional form: 

 

 𝑇𝑖𝑗 =  𝐴𝑖𝑂𝑖𝐵𝑗𝐷𝑗(𝑆𝑖𝑗)𝜌𝑒−𝛽𝐶𝑖𝑗  (13) 

 
𝐴𝑖 =

1

∑ 𝐵𝑗𝐷𝑗(𝑆𝑖𝑗)𝜌𝑒−𝛽𝐶𝑖𝑗
𝑗

  (14) 
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𝐵𝑗 =

1

∑ 𝐴𝑖𝑂𝑖(𝑆𝑖𝑗)𝜌𝑒−𝛽𝐶𝑖𝑗
𝑖

 (15) 

 

In Equation (13), 𝜌 is a parameter to measure influence of attractiveness of each OD pair. 

It has been stated that the value of 𝜌 is determined by empirical research (Hu and Pooler 2002; 

de Grange, Fernández, and de Cea 2010). The sign of 𝜌 is determined by two forces: competition 

forces and agglomeration forces. Competition forces measure how people want to travel to areas 

with more accessibilities and agglomeration forces reflect the willingness to travel within a 

specific area, such as an area with more job opportunities. A positive value of 𝜌 means that 

competition forces is dominant while the agglomeration force will be principal if the sign of 𝜌 is 

negative or close to zero. 𝛽 is the travel decay parameter, which measures the willingness of 

people travel between two locations. 

  

Parameter Estimation  

Parameter estimation for destination choice model has been a frequently debated subject 

among researchers and practitioners. In a research by de Grange, Fernández, and de Cea (2010), 

Poisson model and logit model are proved to be identical to solve the parameter estimation 

problem for a entropy-based destination choice model. In the following context, the identical 

relation of Poisson model and logit model is proved again regarding parameter calibration for the 

Equation (13).  

 

Poisson distribution 

The probability function for Poisson distribution is  
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𝑃 (

𝑁𝑖𝑗

𝑇𝑖𝑗
) =

𝑒−𝑇𝑖𝑗 ∙ (𝑇𝑖𝑗)𝑁𝑖𝑗

(𝑁𝑖𝑗)!
 (16)  

 

where 𝑁𝑖𝑗 is the estimated number of trips between origin 𝑖 and destination 𝑗 and 𝑇𝑖𝑗 is 

the observed number of trips between origin 𝑖 and destination 𝑗. 

 

Equation (13) was substituted in Equation (16): 

 

 

𝑃 (
𝑁𝑖𝑗

𝑇𝑖𝑗
) =

𝑒−𝐴𝑖𝑂𝑖𝐵𝑗𝐷𝑗(𝑆𝑖𝑗)𝜌𝑒
−𝛽𝐶𝑖𝑗

∙ (𝐴𝑖𝑂𝑖𝐵𝑗𝐷𝑗(𝑆𝑖𝑗)𝜌𝑒−𝛽𝐶𝑖𝑗)𝑁𝑖𝑗

(𝑁𝑖𝑗)!
 (17)  

 

The values of parameter 𝜌 and 𝛽 in Equation (17) can be solved by maximizing the 

following log-likelihood function: 

 

 max  ln 𝐿 = ∑ ∑[−𝐴𝑖𝑂𝑖𝐵𝑗𝐷𝑗(𝑆𝑖𝑗)𝜌𝑒−𝛽𝐶𝑖𝑗

𝑗𝑖

+ 𝑁𝑖𝑗(ln 𝐴𝑖 + ln 𝐵𝑗 + 𝜌 ln 𝑆𝑖𝑗 − 𝛽𝐶𝑖𝑗)] 

(18)  

 

Given that ∑ 𝑇𝑖𝑗 = ∑ 𝑁𝑖𝑗 = 𝑇𝑖𝑗𝑖𝑗  is a constant, Equation (18) is equivalent to 

 

 



 

88 

 

 max  ln 𝐿 = ∑ ∑[𝑁𝑖𝑗(ln 𝐴𝑖 + ln 𝐵𝑗 + 𝜌 ln 𝑆𝑖𝑗 − 𝛽𝐶𝑖𝑗)]

𝑗𝑖

 (19)  

 

Logit model 

Based on Equation (13), a logit probability function is defined: 

 

 
𝑃 =

𝑇𝑖𝑗

∑ 𝑇𝑖𝑗𝑖𝑗
=

𝐴𝑖𝑂𝑖𝐵𝑗𝐷𝑗(𝑆𝑖𝑗)𝜌𝑒−𝛽𝐶𝑖𝑗

∑ −𝐴𝑖𝑂𝑖𝐵𝑗𝐷𝑗(𝑆𝑖𝑗)𝜌𝑒−𝛽𝐶𝑖𝑗
𝑖𝑗

=
𝑒𝜇𝑖+𝛾𝑗+𝜌 ln 𝑆𝑖𝑗−𝛽𝐶𝑖𝑗

∑ 𝑒  𝜇𝑖+𝛾𝑗+𝜌 ln 𝑆𝑖𝑗−𝛽𝐶𝑖𝑗
𝑖𝑗

 (20) 

 

Similar to the process to simplify Equation (18), the log likelihood function for solving 

parameters in Equation (19) takes the form: 

 

 max  𝑙𝑛 𝐿 = ∑ ∑[𝑁𝑖𝑗(𝑙𝑛 𝐴𝑖 + 𝑙𝑛 𝐵𝑗 + 𝜌 𝑙𝑛 𝑆𝑖𝑗 − 𝛽𝐶𝑖𝑗)]

𝑗𝑖

 (21)  

 

Observing Equations (19) and (21), I conclude that Poisson and logit model are identical 

to estimate parameters in the entropy-based competing-destination model in this study. 

Considering the trip data for every O-D pair is a non-negative variable, a Poisson model is 

finally adapted to calibration the parameters in Equation (13).  
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RESULTS 

In this chapter, I select the Divvy bikeshare system in Chicago as an example to examine 

a competing destination model. Since the profiles for annual members and day pass users are 

different, I analyzed them separately. In this way, we can observe the differences in travel 

behavior of bikeshare trips. Besides splitting trips between subscribers and day pass users, I also 

divide OD pairs into four categories based on area types of origination stations and destination 

stations as shown in Figure 30. By comparing calibration results using trip data from different 

OD types, we can know how people from disadvantaged areas utilize bikeshare and what the 

features of their bikeshare trips are.  

 

 

Figure 30. OD type classification. 

 

Model Calibration Results Using Distance as Travel Decay 

Calibration results for our destination competing model is shown in Table 21. First, for 

the value of 𝜌 for annual members, accessibility difference is obviously more important for 

people from disadvantaged communities since 𝜌 is bigger for OD type 1 than other OD types. 

For OD type 2 and 3, they include trips generated from disadvantaged areas or terminated there. 

The 𝜌 for OD type 2 or 3 is not less than that of OD type 4, which prove that users from 

disadvantaged areas are attracted to area with accessibility improvements. Thus, accessibility 
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improvement (e.g., jobs, grocery stores) plays an important role to attract disadvantaged 

population to choose bikeshare as a transport mode. Research has shown that bikeshare systems 

can bring significant accessibility improvement especially for disadvantaged areas where current 

bikeshare systems have not provide enough services (Niemeier and Qian 2018). Thus, there exist 

a gap between potential bikeshare demand and bikeshare service supply in disadvantaged areas. 

Current development strategies of bikeshare systems should be shifted from targeting particular 

cyclist groups to fill the demand for bikeshare services in unrepresentative areas in traditional 

urban planning.  

Secondly, I compare the 𝛽 of different OD types for subscribers. For users cycle within 

disadvantaged areas, they tend to make short trips, which is indicated by the smaller value of 𝛽. 

This may result from the fact that the range of distances between stations both within 

disadvantaged areas are smaller compared with trips between disadvantaged areas and other 

areas or both within other areas. If we compare the distance decay parameter for OD type 2, 3 

and 4, the ranges of trip distance are similar among these OD pairs. However, users from 

disadvantaged area still tend to make short trips. There are couple of reasons behind this 

phenomenon. Recall that the distance information is from Google API. In reality, bikeshare users 

may travel for a longer distance than the estimated one. Even though I know nothing about the 

true distance information, this calibration results could still provide some suggestions for 

bikeshare planning. For example, bikeshare operators may shorten the distance between stations 

in disadvantaged areas, which may result in more trips there.  

All the findings from subscribers cannot be totally applied to day pass users. The 

differences of 𝜌 value for different OD types is more significant for day pass users. For OD type 

4, 𝜌 is even negative (-0.04). One reason may be that day pass users, who tend to be tourists, are 
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more likely to travel within the Chicago downtown area where there are many shopping malls, 

historical sites, museums, and other attractions. Different from subscribers, the preferences of 

trip distance are similar across trips within different OD types, which should be caused by the 

profile of day pass users.  

To test the prediction capacity of our model, R2 and Log-L (log-likelihood) are utilized. It 

is reasonable that the prediction error increase as the size of OD matrix become greater, as well 

as the Log-L. Additionally, the prediction error for day pass users are smaller compared with that 

for subscribers. The reason may be that total number of trips by day pass users is much smaller 

than that of annual members, which make the model produce better performance.  

 

Table 21. Calibration results using trip distance for annual members and day pass users. 

User type O-D type 𝜌 𝛽 R2 Log-L 

Annual members 

1 0.12 -0.83 0.60 -18083.83 

2 0.07 -0.76 0.60 -53533.27 

3 0.10 -0.76 0.62 -50132.30 

4 0.07 -0.59 0.46 -1134310.18 

Day pass users 

1 0.12 -0.47 0.62 -5138.53 

2 0.01 -0.47 0.86 -15291.10 

3 -0.02 -0.45 0.82 -15623.75 

4 -0.04 -0.41 0.84 -269644.92 

Note: 1. Disadvantaged areas to disadvantaged areas; 2. Disadvantaged areas to other areas; 3. Other areas to 

disadvantaged areas; 4. Other areas to other areas.  

 

As stated by many researchers, trip distance is an important factor to affect destination 

choices (Faghih-Imani and Eluru 2015; de Grange, Fernández, and de Cea 2010). This paper 

summarized the histograms of trip distance for different OD pair categories. Similarly, annual 

members and day pass users are treated separately. Within annual members or day pass users, 

four different OD categories are considered, which is same with the model calibrations. Figure 

31 displays histograms of modeled and observed trips in different trip length for subscribers. 
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From the aspect of trip length distribution, the model proposed in this paper generated a perfect 

prediction no matter for the peaks and tails of the trip length distribution. Additionally, the most 

frequent trip length is within one to three kilometers no matter where a bikeshare trip starts or 

ends. However, for bikeshare trips within disadvantaged areas, the proportion of long-distance 

trips (e.g. longer than six kilometers) is smaller than within other areas. The tail of histogram of 

distance for bikeshare trips from or ended in other areas is heavier than that of bikeshare trips 

both from and ended in disadvantaged areas. This means that users from disadvantaged areas 

will make longer trips if their destinations are located in other areas, where these may exist more 

job opportunities, and better grocery store, among many others. 

The trends of histograms in Figure 32 for day pass users are not same with that for annual 

members, even though most of the trips fall into the time range of one to three minutes. When 

predicting trips for day pass users, the CD model doesn’t behavior as perfect as for annual 

members. The reason is that annual members tend to make bikeshare trips regularly for a 

particular purpose once they prefer bikeshare to other transport modes. On the contrary, a large 

proportion of day pass users are travelers (Buck et al. 2013). It is more difficult to predict 

destination choices of day pass users since there are so many uncertainties in their travel 

behaviors. If comparing histogram of trip length distribution in same OD category for annual 

members and day pass users, the tail of the distribution for day pass users is heavier than that for 

annual members. Particularly, for bikeshare trips of day pass users from or ended in other areas, 

there a considerable amount of bikeshare trips within nine to ten kilometers.  
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Figure 31. Histogram of modeled and observed trips for annual members (OD types: 1. 

Disadvantaged areas to disadvantaged areas; 2. Disadvantaged areas to other areas; 3. Other areas 

to disadvantaged areas; 4. Other areas to other areas.) 
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Figure 32. Histogram of modeled and observed trips for day pass users (OD types: 1. 

Disadvantaged areas to disadvantaged areas; 2. Disadvantaged areas to other areas; 3. Other areas 

to disadvantaged areas; 4. Other areas to other areas.) 

 

Model Calibration Results Using Travel Time as Travel Decay 

After using trip distance distribution to estimate travel decay, I applied trip time (Google 

API estimated trip time) as travel decay to calibration this model. It is important to note that 

there two types of travel time in this paper. One is the travel time by Google API and another one 

is the actual average trip time between originations and destinations. Since our model is 

developed to provide suggestions on future bikeshare planning, it is reasonable to use the Google 

API estimated trip time. Thus, our model can be applied to other areas where bikeshare systems 

have not been implemented. 
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Table 22 shows the calibration results using Google API trip time. Since the trip distance 

used before is also estimated by Google API, the correlation between trip distance and trip time 

by Google API is extremely high. Thus, most of the findings are same with those from previous 

model calibration using trip distance.  

 

Table 22. Calibration results using Google API trip time for annual members and day pass users. 

User type O-D type 𝜌 𝛽 R2 Log-L 

Annual members 

1 0.13 -0.24 0.61 -17753.98 

2 0.07 -0.22 0.62 -52308.30 

3 0.10 -0.22 0.64 -48628.92 

4 0.10 -0.16 0.45 -1116741.07 

Day pass users 

1 0.15 -0.15 0.66 -4905.44 

2 0.01 -0.15 0.86 -14757.02 

3 -0.01 -0.14 0.83 -15025.35 

4 0.00 -0.13 0.86 -255195.43 

 

Similarly, this paper presented the histograms for trip time distribution. For subscribers, 

most of the trips are less than 14 minutes, no matter for what kind of OD types. However, the 

most frequent trip time for day pass users is longer than that of annual members. Especially for 

OD type 2, more trips are between 12 to 18 minutes. Recall that the most frequent trip distance 

for both annual members and day pass users are almost the same in Figure 31 and Figure 32. 

However, this difference becomes significant from the perspective of trip time. This indicates 

that day pass users tend to spend more time on same distance trip than annual members, which is 

reasonable since tourists do not have a strict time plan on most cases. 
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Figure 33. Histogram of modeled and observed trips for annual members (OD type: 1. 

Disadvantaged areas to disadvantaged areas; 2. Disadvantaged areas to other areas; 3. Other areas 

to disadvantaged areas; 4. Other areas to other areas. 



 

97 

 

 

Figure 34. Histogram of modeled and observed trips for day pass users (OD type: 1. Disadvantaged 

areas to disadvantaged areas; 2. Disadvantaged areas to other areas; 3. Other areas to 

disadvantaged areas; 4. Other areas to other areas. 

 

DISCUSSION 

Real Trip Time and Google API Trip Time 

In the Figure 41 in Appendix, I plotted the histograms of trip time for both annual 

members and day pass users under different ranges of estimated trip time. In Figure 35, for 

example, this row of panels only shows the histograms of bikeshare trips within 2 minutes 

estimated by Google API. Blue bins are for annual members, while green bins are for day pass 

users. More histograms of trip time within other ranges are in Appendix.   
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Figure 35. An example of trip time histograms for different OD types.  

 

As we can see, subscribers stick to the shortest path more than day pass users. The reason 

may be that subscribers are more familiar with current bike network and they have specific trip 

purposes. On the contrary, day pass users are more likely to cycle around and do not have a 

strong time limit. There are also a proportion of users make a bikeshare trip with time shorter 

than Google estimates. This phenomenon may happen because their cycling speed is greater than 

that used by Google, or they take advantage of some shortcuts to save trip time. The real travel 

time by most subscribers also reveal that Google API provides a great estimation of travel time 

for bikeshare trips made by subscribers. Google may predict the most reliable route by bike with 

huge amount of historical trip data collected by Google Map. It is also possible that bikeshare 

users use Google Map to navigate. However, people from disadvantaged communities are less 

likely to own a smartphone to use advanced navigation tools. Thus, disadvantaged population 

could make longer trips. 

Figure 36 shows the mean value and standard deviation of travel time from historical trip 

data. On average, subscribers tend to spend less time than day pass user as stated in preview 

paragraph. As trip distance become greater and greater, the differences of mean travel time for 



 

99 

 

subscribers between different OD type become significant. OD trips within disadvantaged areas 

tend to have a higher mean travel time compared with other types of OD pairs. The reasons may 

be the missing of advantaged navigation tools or detour caused by insufficient bike paths in 

disadvantaged areas.  

In general, the standard deviation (SD) of travel time increases with the rise of trip 

distance. There is significantly increase of travel time variance after estimated travel time is over 

30 minutes. It may result from various trip purposes. A long-distance trip may fit for more trip 

purpose choices, which will cause the huge uncertainty in travel time. If we compare the SD of 

travel time for different OD types, SDs of OD type 1, 2, or 3 are greater than that of OD type 4 

on most cases. This may result from the fact that there is a deficit for bicycle path network in 

disadvantaged areas. Users there could often detour to reach their destinations. Other reasons, 

e.g., unfamiliar with price scheme, may explain the longer trips as well. Note that the SD of 

travel time within longer trip distance range is extremely small in OD type 1, 2, and 3 because 

there are limited trip records. In some cases, there is only one trip record and SD is zero.  

When we observe travel time of day pass user, the travel time is more unstable and 

difficult to predict. Unlike subscribers, the SD of day pass users for travel time within short 

distance trips is significantly greater than other trips. Day pass users may take recreation trips 

around and return their bikes to the origination.   
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Figure 36. Mean and standard deviation of bikeshare trip time against Google API travel time. 

 

Figure 36 shows the absolute value of real mean travel time. Now, I want to how the 

relative trip time variance changes with trip length. In Figure 37, the trend of relative trip time 

SD is totally opposite to that of absolute trip time SD in Figure 36. It is interesting to notice that 

relative SD for trip time in OD type 1 decrease much faster than that of other OD types. Thus, 

users from disadvantaged areas are more sensitive to the change of estimated trip time. As a trip 

becomes longer and longer, disadvantaged population will tend to keep trip time more consistent 

to avoid extra trip time, which may lead to extra trip charge. In Divvy bikeshare, trip price will 

increase every 30 minutes, no matter for subscribers or day pass users. Thus, we can see that an 
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obvious difference of relative SD of trip time between 0-30 minutes’ trips and 30+ minutes’ 

trips.  

 

 

Figure 37. Relative standard deviation (SD) of bikeshare trip time against Google API travel time. 

 

Trip Spending Difference 

Trip price is positively corelated with trip time as shown in Table 23. However, since the 

relation is not perfect linear, there is a need to uncover the travel behaviors from the perspective 

of trip price. As presented in Figure 38, subscribers tend to make a trip within 30 minutes if a trip 

is estimated to take no more than 30 minutes. This is reasonable since subscribers want to make 
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the most of their membership benefit (30-minute free ride). Once a trip will take longer than 30 

minutes, the trip price will increase dramatically, and the standard deviation rises at the same 

time. There are still slight differences for trips by subscribers within different OD types. Users 

from disadvantaged areas are more likely to spend more than trips originated from and 

terminated at other areas within the same time range. Besides, the variance for trip price of OD 

type 1, 2, and 3 are also greater than that of type 4, especially for trip estimated to be longer than 

30 minutes. There may be the same reasons to explain for the greater variance of trip price as 

mentioned in Section above.  

 

Table 23. Pricing structure (in dollars) for Divvy in 2016 and 2017. 

Trip duration Annual member Day pass user 

Base charge 99 per year 9.95 per day 

0-30 mins 0 0 

31-60 mins 1.5 2 

61-90 mins 4.5 6 

91 and more mins 6 per 30 minutes 8 per 30 minutes 
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Figure 38. Mean and standard deviation of bikeshare trip price against Google API travel time. 

 

Willing to Pay for Travel Time Variance  

There are already findings regarding the behaviors of bikeshare trip in disadvantaged 

areas in Sections above. It is also interesting to notice how people are willing to pay for the trip 

time variance. This trip time variance in this study can result from signal controls at 

intersections, the possibility of detour, and other activity interruption during trips (e.g., 

shopping). The trip time variance will eventually lead to an extra charge for a bikeshare trip. In 

some case, a trip time variance is big which mean that a user may make other activities during a 

bikeshare trip. Thus, travel time variance measures how people are willing to integrate other 
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activities into their bikeshare trips. For example, a person may do a short-time shopping during a 

ride since there is no bikeshare station to return bikes.  

In Figure 39, the x coordination is relative trip time standard deviation, which is 

calculated by dividing travel time variance by average travel time for estimated travel time 

(Google API time) within a specific range. For example, I first grouped all bikeshare trips with 

estimated travel time between 0 and 2 minutes. Then, I calculated the average real travel time 

and corresponding travel time standard deviation. The relative trip time standard deviation is 

calculated by dividing the travel time standard deviation by the average travel time. Last, I 

calculated the average extra payment (actual spending minus estimated cost based on Google 

API travel time) users paid for their bikeshare trips. This relative trip time standard deviation and 

the average extra trip cost will be x coordination and y coordination correspondingly of a point in 

Figure 39. The general trend for relation between relative trip time variance and willing to extra-

pay seem to follow this figure on the right. At first, with a specific range, people are willing to 

pay more price for extend their trip time beyond the estimated trip time. However, after a 

particular value of relative trip time SD, the willing to pay for more trip time decline. This 

phenomenon is more obvious in trips of OD type 1. Thus, users from disadvantaged areas spend 

less on the same level of relative trip time variance than users from other areas.   
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Figure 39. Price difference against relative trip time standard deviation (SD). 

 

Trip Distribution between Origins and Destinations 

To deeply understand what drive people from disadvantaged areas to other areas, I 

plotted these OD trip for subscribers against employment rate of originations and destinations. It 

is clear that station in disadvantaged areas have obviously deficit in employment rate then other 

areas. Since job commute is the main purpose for bikeshare trips, a low employment rate in 

disadvantaged areas lead significant less trips there. If we only look at OD types 1, 2 and 3, the 

number of OD trip increase obviously with the rise of employment rate.  Job commute has been 

reported in several survey studies to be the main purpose for bikeshare trips (Buck et al. 2013; 

McNeil, Dill, MacArthur, and Broach 2017). More in-depth examination is needed of that how 

bikeshare systems can help increase employment rate. 
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Figure 40. OD trips (annual members) against employment rate in originations and destinations 

(top: all four OD types; bottom: only three OD types). 
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CONCLUSIONS 

This study develops a destination competing model to estimate bikeshare trip 

distributions. Before calibrating this model, I classified OD into four types based on 

originations/destinations in disadvantaged areas or not, which can capture the different travel 

patterns of bikeshare trip flow among different areas. According to the calibration results, 

accessibility differences between originations and destinations play an important role in 

attracting disadvantaged population to use bikeshare. It is also interesting to note that 

disadvantaged users tend to make a longer trip to other areas to improve accessibility, e.g., better 

food choices in more grocery stores and more job opportunities. By mapping the employment 

rate against OD trips, I notice that trip number increases significantly with the rise of the 

employment rate, which indicates that job commute is one of the important trip purposes for 

using bikeshare, no matter for disadvantaged areas or other areas. The greater ridership in higher 

employment rate areas may also result from more non-work trips, owning to more discretionary 

income. Besides, this destination choice model is calibrated for both annual members and day 

pass users, separately. In this way, I found that day pass users are less sensitive to the travel time 

even though they pay more than subscribers for extra trip time (over 30 minutes). Overall, this 

model provides a good estimation of distributions for bikeshare trip time and trip distance. This 

provides a suggestion for local governments on how to locate bikeshare stations to cover 

bikeshare trip demand within most frequent trip distant/time range. 

In our study, Google API provides a good estimation of average historical bikeshare trip 

time, especially for annual members. Users from disadvantaged areas tend to finish a trip with 

longer time than estimated time, especially for trips estimated within 30 minutes. The variance of 

their bikeshare trip time is also greater than that of trips within other areas. This phenomenon is 
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more obvious when trip estimated time is within the free ride time range (30 minutes). If a trip is 

predicted to be longer than 30 minutes, the variance of trip time drops significantly for trips 

within disadvantaged areas. This means that disadvantaged populations are more sensitive to the 

extra fees. 

Annual members from disadvantaged areas seem to pay a little more than other users for 

trips within similar distance. Their trip price variance is likewise greater. However, once the trip 

time is over 30 minutes, disadvantaged populations will try to spend less, and their trip time tend 

to be consistent. It is important to notice bikeshare users’ willing-to-pay (WTP) for trip time 

variance since users from disadvantaged areas are more sensitive to the variance of trip time. The 

strong sensitive to extra change will seriously influence their flexibility in using bikeshare. 

Additionally, there are not enough bikeshare stations located in their living areas. If we could 

increase the time limit for free ride, it could promote more trip bikeshare demand in these 

disadvantaged areas. They could make a long trip to reach far destination or cycle slowly to keep 

safe on road with no extra charge.  

Trip purposes of bikeshare trips are not available and I could do more dedicated analysis 

for trip time/distance distributions of different trip purposes if I could get access to that data. If 

the route for every trip is available, I could know how long a bikeshare user really spend on 

cycling and what reason causes more time than estimated. Combining route information with 

local road network can also answer this question that to what extend the extra trip time is caused 

by insufficient bicycle infrastructure or unfamiliar with road network. Overall, this study 

provides some remarkable equity insights on travel behaviors on bikeshare for disadvantaged 

populations.  
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CHAPTER 5: FUTURE RESEARCH PLAN 

 

This research has applied spatial analysis, statistical regression, and model calibration to 

explore travel behaviors of disadvantaged users using bikeshare services, and provide planning 

suggestions for developing a socially inclusive bikeshare system. However, as stated in previous 

chapters, there are a certain number of limitations in this study because of data availability, 

constrain of research time, and emerging advanced bikeshare system (e.g., dockless and electric 

bike). In the future, I will continue to collect more bikeshare data, especially related to dockless 

bikeshare and trip level bikeshare purposes, and other micro-mobility activity data (e.g., shared 

scooter). More detailed data for both trips and users’ information can make most of quantitative 

methodologies to uncover the travel behaviors of disadvantaged users when using micro-

mobility services. More importantly, I am interested in studying how these micro-mobility 

services are connected with public transit systems, and to what extent these services can improve 

health status for disadvantaged communities. These research ideas can help public better 

understand micro-mobility services, which will finally promote these sustainable transport 

systems. This research will assist city planners and municipalities to understand how to better 

design socially inclusive micro-mobility services to supplement current public transit systems.  
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CHAPTER 6: SUMMARY AND CONCLUSIONS 

 

Bikeshare programs can play an important role in sustainable transportation systems by 

offering a viable mode choice for many types of last mile trips. However, recent bikeshare 

systems tend to target more affluent and white-dominated areas. This quantitative analysis 

demonstrates bikeshare systems can produce substantial accessibility improvements for 

disadvantaged communities. Furthermore, our research presents a new index that identifies 

bikeshare station locations providing high potential accessibility improvement to jobs and 

essential services for disadvantaged communities. By comparing these potential locations with 

current dock-based bikeshare station siting, our research clearly demonstrates that most of the 

current bikeshare stations in Chicago and Philadelphia are not located in high priority areas for 

bikeshare stations if we consider disadvantaged populations. Through these two study cities, we 

learn that a bikeshare system in its early stages can proactively attempt to eliminate access 

barriers for disadvantaged communities with consideration of equitable accessibility.  

The work also estimates bikeshare trip demand based on a number of key system and 

socio-economic variables. More importantly, the estimated regression model provides evidence 

about the impact of socio-economic variables, especially for individuals in disadvantaged 

communities that affect their trip productions and attractions. Furthermore, the marginal effect of 

bikeshare location is the greatest, which means that if a bikeshare station is located in a 

disadvantaged community, the number of annual trips at that station is noticeably lower relative 

to stations in affluent and white communities. By analyzing the historical bikeshare trips, I notice 

that residents in disadvantaged areas make much longer trips than in other areas if they already 

are subscribers. After joining as annual members, disadvantaged populations can enjoy real 
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benefits by bikeshare, such as saving money on transport. Inspired by those findings from 

historical bikeshare trip data, I think of two suggestions on future policy for developing 

bikeshare: low membership fees and longer extended free-ride time.  

Finally, this study develops a destination competing model to estimate bikeshare trip 

distributions. According to the calibration results, accessibility differences between origins and 

destinations play an important role for attracting disadvantaged population to use bikeshare. It is 

also interesting to note that disadvantaged users tend to make a longer trip to other areas to 

improve accessibility. By mapping the employment rate against OD trips, I notice that trip 

number increase significantly with the rise of employment rate. It indicates that job commute is 

an important trip purpose for using bikeshare no matter for disadvantaged areas or other areas. 

Our destination choice model is calibrated for both annual members and day pass users, 

separately. In this way, I found that day pass users are less sensitive to the travel time since their 

time schedules are flexible. Overall, our model provides a good estimation of distributions for 

bikeshare trip time and trip distance. This can provide a suggestion for local governments on 

how to locate bikeshare stations to cover bikeshare trip demand within most frequent trip 

distant/time range. 

 In conclusion, this dissertation work fills some important research gaps in bikeshare 

equity study. Through a novel and thorough quantitative research, this work provides practical 

suggestions to both local municipalities and bikeshare industry managers who are concerned 

with providing a socially inclusive bikeshare service. 
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APPENDIX 

Table 24 Data for candidate cities (part 1) 

No. State City 

Urbanized 

land area 

2010 

(square 

miles) 

Population 

Nonwhite 

percentage 

(%) 

Median 

household 

annual 

income 

State 

bike 

friendly 

ranking 

(2015) 

City 

Bike 

Friendly 

Ranking 

No. of 

bikeshare 

stations 

Percentage 

of 

households 

with no 

vehicles/% 

Vehicles 

per 

household 

1  Washington 

DC 
1322 649,111 59.8 $67,572 - Silver 373 37.9 0.9 

2 Washington Seattle 1010 652,405 29.4 $70,172 1 Gold 66 34.91 1.4 

3 Minnesota Saint Paul 52 294,873 39.9 $49,469 2 Bronze 146 14 1.5 

4 Minnesota Minneapolis 1022 400,070 29.8 $50,563 2 Gold 65 18.1 1.3 

5 Massachusetts Boston 1873 645,966 47.1 $53,583 4 Silver 140 35.8 0.9 

6 Utah 
Salt Lake 

City 
278 191,180 24.9 $50,827 5 Silver 25 12.8 1.5 

7 Oregon Portland 524 609,456 23.9 $55,571 6 Platinum Will develop 15 1.5 

8 Colorado Boulder 32 101,500 12 $57,428 7 Platinum 39 9 1.6 

9 Colorado Fort Collins 109 152,061 10.37 $56,464 7 Platinum Will develop 5.4 1.9 

10 Colorado Denver 668 649,495 30 $51,089 7 Silver 87 11.7 1.5 

11 California Sacramento 471 479,686 55 $48,034 8 Silver Will develop 11.1 1.6 

12 California San Diego 732.4 1,355,896 57.1 $63,456 8 - 100 7.6 1.7 

13 California 
San 

Francisco 
524 837,442 51.5 $77,485 8 Gold 84 30.4 1.1 

14 Wisconsin Madison 151 243,344 21.1 $49,546 9 Gold 36 13.1 1.4 

15 Wisconsin Milwaukee 545 599,164 63.1 $35,186 9 Bronze 35 19.2 1.3 

16 Maryland Baltimore 717 622,104 68.37 $42,266 10 Bronze Will develop 30.6 1.1 

17 New York 
New York 

City 
3450 8,406,000 67.3 $54,700 11 - 332 38.6 0.8 
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1
 

18 Pennsylvania Pittsburgh 905 305,841 34 $42,004 12 Bronze 14 25.2 1.1 

19 Pennsylvania Philadelphia 1981 1,553,000 54.5 $36,836 12 Silver 60 33.1 1 

20 Illinois Chicago 2,443 2,719,000 68.3 $47,099 14 Silver 476 27.3 1.1 

21 Michigan Detroit 1337 688,701 91.1 $24,820 18 - 42 25.2 1.1 

22 Arizona Phoenix 1147 1,513,000 28.93 $46,601 19 Bronze 41 9.1 1.6 

23 Arizona Tucson 353 526,116 52.8 $35,720 19 Gold Will develop 12.7 1.5 

24 Idaho Boise 133 214,237 11.12 $47,847 21 Silver 27 6.4 1.7 

25 Florida Miami 1239 417,650 27.4 $31,070 24 Bronze 75 21.5 1.2 

26 Georgia Atlanta 2645 447,841 61.6 $46,485 25 - Will develop 16.9 1.3 

27 Rhode Island Providence 545 177,994 45.47 $36,378 26 -  19.6 1.3 

28 Texas Houston 1660 2,196,000 50.7 $45,353 30 Bronze 29 10 1.5 

29 Texas Austin 523 885,400 34.64 $56,351 30 Silver 50 6.9 1.6 

30 Texas Fort Worth 1779.1 792,727 40.31 $52,430 30 - 43 6.5 1.7 

31 Missouri Kansas City 678 467,007 39.32 $45,551 34 Bronze 27 11.2 1.5 

32 
South 

Carolina 
Spartanburg 190 37,647 52.89 $32,499 44 Bronze 5 - - 

33 Alabama Birmingham 530 212,113 77.7 $31,152 50 - 40 15.1 1.4 

34 Montana Missoula 45.2 66,788 6.43 $44,232 46 Gold 
Rent bike 

shop 
7 1.7 

Note: 1. All data were collected from September to December 2015; 

           2. “-” indicates that no information was available; 

           3. City area and population data are from the website links: https://www.census.gov/dataviz/visualizations/026/508.php, 

https://en.wikipedia.org/wiki/List_of_United_States_cities_by_population_density, and https://en.wikipedia.org/wiki/List_of_United_States_urban_areas; 

           4. Race percentage data are from Wikipedia; 

           5. Median household income data are from the website link: http://www.city-data.com/; 

           6. Bicycle friendly data are from the official website of the League of American Bicyclists; 

           7. Vehicle ownership data are from the website link: http://www.governing.com/gov-data/car-ownership-numbers-of-vehicles-by-city-map.html; 

           8. The population of Chicago in this table is 2,719,000, which is different from the population (2,869,555) calculated later. The reason is that we included 

some areas (e.g., Evanston in the north of Chicago) where has been covered by the Chicago bikeshare system (Divvy); 

           9. The population of Philadelphia is 1,553,000 in this table, which is slightly greater than 1,551,773 calculated by 2010 Census data later; 

           10. The size of some bikeshare systems increased during our research period. The number of the bikeshare stations in Chicago had increased from 476 to 

581. The bikeshare system (Indego) in Philadelphia had 105 bikeshare stations when the report was done in September 2017. 

 

https://www.census.gov/dataviz/visualizations/026/508.php
https://en.wikipedia.org/wiki/List_of_United_States_cities_by_population_density
https://en.wikipedia.org/wiki/List_of_United_States_urban_areas
http://www.city-data.com/
http://www.governing.com/gov-data/car-ownership-numbers-of-vehicles-by-city-map.html
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Table 25 Data for candidate cities (part 2) 

No. State City 

Public Transit 

Protected 

bike path 

Average monthly 

temperature (°F) 

Average 

annual 

precipitation 

Average 

annual 

snowfall (inch) 

Bus 

transit/Bike 

racks 

available 

Metro or railway/Bike 

racks available 
Jan. April July Oct. inch days  

1 DC 
Washington 

DC 
Metrobus/Yes Washington Metro/Yes Yes 34.9 56.1 79.2 58.8 39.35 113 17.1 

2 
Washingt

on 
Seattle 

King 

County/Yes 

Seattle Center Monorail 

and link light rail/No 
Yes 40.9 50.2 65.3 52.7 37.07 155 11.4 

3 Minnesota Saint Paul 
Metro 

Transit/Yes 
Metro/- - 13.1 46.6 73.2 48.7 29.41 115 49.9 

4 Minnesota Minneapolis 
Metro 

Transit/Yes 
Metro/- Yes 13.1 46.6 73.2 48.7 29.41 115 49.9 

5 
Massachu

setts 
Boston 

MBTA 

Bus/Yes 

MBTA/Yes (some 

available) 
Yes 29.3 48.3 73.9 54.1 42.53 127 42.8 

6 Utah 
Salt Lake 

City 

Utah Transit 

Authority/Ye

s 

Trax light rail/- Yes 29.2 50 77 52.5 16.5 91 58.7 

7 Oregon Portland TriMet/Yes Max light railway/Yes Yes 39.9 51.2 68.1 54.3 37.07 153 6.5 

8 Colorado Boulder RTD/Yes No/- Yes 34.6 49.5 72.5 51.8 20.66 89 89 

9 Colorado Fort Collins Transfort/Yes No/- Yes 31.1 41.5 66.5 50.1 16.05 81 57 

10 Colorado Denver RTD/Yes Light Rail/Yes Yes 29.2 47.6 73.4 51 15.81 89 60.3 

11 California Sacramento 

Sacramento 

Regional 

Transit 

District 

(RT)/Yes 

Light Rail/Yes Yes 46.3 58.9 75.4 64.4 17.93 58 - 

12 California San Diego 

San Diego 

Metropolitan 

Transit 

System/Yes 

Trolley car/Yes - 57.8 62.6 70.9 67.6 10.77 41 - 
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13 California San Francisco 
Golden Gate 

Transit/Yes 

Light Rail and Bay 

Area Rapid Transit/Yes 
Yes 49.4 56.2 62.8 61 20.11 63 - 

14 Wisconsin Madison 
Madison 

Metro/Yes 
No/- 

Yes (only 

one) 
17.3 45.9 71.6 49.3 32.95 120 43.8 

15 Wisconsin Milwaukee 

Milwaukee 

County 

Transit 

System/Yes 

No/- 
Yes (only 

one) 
20.7 45.2 72 51.4 34.81 125 47 

16 Maryland Baltimore 
Maryland 

Transit/Yes 

Light Rail and 

Baltimore Metro 

Subway/- 

Planning 32.3 53.2 76.5 55.4 41.94 115 21.5 

17 New York 
New York 

City 

MTA 

Subway/Yes 

Train or light rail/Yes 

(only off rush hour) 
- 23.6  82  46.42 122 26.7 

18 
Pennsylva

nia 
Pittsburgh 

PAT 

Transit/Yes 
Light Rail/- Yes 27.5 49.9 72.6 52.5 37.85 152 43.6 

19 
Pennsylva

nia 
Philadelphia SEPTA/Yes 

Regional Rail and 

PATCO Speedline/Yes 
Yes 32.3 53.1 77.6 57.2 42.05 117 20.8 

20 Illinois Chicago CTA/Yes light Rail / Yes Yes 22 47.8 73.3 52.1 36.27 125 38 

21 Michigan Detroit 

Detroit 

Department 

of 

Transportatio

n/ Yes 

Ann Arbor-Detroit 

Regional Rail/- 
Yes 24.5 48.1 73.5 51.9 32.89 135 41.3 

22 Arizona Phoenix 
Valley 

Metro/Yes 
Light Rail/Yes Yes 54.2 70.2 92.8 74.6 8.29 36 - 

23 Arizona Tucson Sun Tran/Yes StreetCar/Yes Yes 51.7 66 86.5 70.5 12.17 53 1.2 

24 Idaho Boise 

Valley 

Regional 

Transit/Yes 

No/- Planning 30.2 50.6 74.7 52.8 12.19 89 20.6 

25 Florida Miami Metrobus/Yes Metrorail/Yes  68.1 75.7 83.7 78.8 58.53 131 - 

26 Georgia Atlanta 
MARTA 

Bus/Yes 
MARTA Train/Yes Yes 42.7 61.6 80 62.8 50.2 115 2.1 

27 
Rhode 

Island 
Providence 

Rhode Island 

Public Transit 

Authority/Ye

s 

No/- - 28.7 48.6 73.3 53 46.45 124 36 

28 Texas Houston 
METRO 

Bus/Yes 
Metrorail/Yes Yes 51.8 68.5 83.6 70.4 47.84 105 0.4 
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29 Texas Austin 

Capital 

Metropolitan 

Transportatio

n/Yes 

Metrorail/Yes Yes 50.2 68.3 84.2 70.6 33.65 85 0.9 

30 Texas Fort Worth The T/Yes DART Rail/Yes - 44.1 65 85 67.2 34.73 79 2.6 

31 Missouri Kansas City KCATA/ Yes No/- Planning 26.9 54.4 78.5 56.8 37.98 104 19.9 

32 
South 

Carolina 
Spartanburg SPARTA/Yes No/- - 42 60.4 79.2 61.1 48.45 101 1.6 

33 Alabama Birmingham MAX/ Yes No/- Yes 42.6 61.3 80.2 62.9 53.99 117 1.5 

34 Montana Missoula 
Mountain 

line/Yes 
No/- Yes 20.2 44.1 67.8 44.8 14 102 36.9 

Note: 1. All data were collected from September to December 2015; 

          2. “-” indicates that no information was available; 

          3. Protected bike path data are from the website link: 

https://docs.google.com/spreadsheets/d/11H0gArHxo6kMop1I18yMcq7ArbNrwaGBLmIXgqI1Gjk/edit; 

          4. Climate and weather date are from the website links: http://www.usclimatedata.com/, https://www.infoplease.com/science-health/weather/climate-100-

selected-us-cities, and https://batchgeo.com/map/us-cities-rainy-days-per-year; 

          5. Public transit data are from the website links: https://en.wikipedia.org/wiki/List_of_bus_transit_systems_in_the_United_States, 

https://en.wikipedia.org/wiki/List_of_United_States_rapid_transit_systems_by_ridership, 

https://en.wikipedia.org/wiki/List_of_United_States_light_rail_systems_by_ridership. 

https://docs.google.com/spreadsheets/d/11H0gArHxo6kMop1I18yMcq7ArbNrwaGBLmIXgqI1Gjk/edit
http://www.usclimatedata.com/
https://www.infoplease.com/science-health/weather/climate-100-selected-us-cities
https://www.infoplease.com/science-health/weather/climate-100-selected-us-cities
https://batchgeo.com/map/us-cities-rainy-days-per-year
https://en.wikipedia.org/wiki/List_of_bus_transit_systems_in_the_United_States
https://en.wikipedia.org/wiki/List_of_United_States_rapid_transit_systems_by_ridership
https://en.wikipedia.org/wiki/List_of_United_States_light_rail_systems_by_ridership
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Figure 41. Histogram of bikeshare trip time under different OD types. 




