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Role of Vehicle Technology on Use: Joint analysis of the 
choice of Plug-in Electric Vehicle ownership and miles 
traveled  

EXECUTIVE SUMMARY  

The increasing diversity of vehicle type holdings and growing demand for battery electric 
vehicles (BEVs) and plug-in hybrid electric vehicles (PHEVs) have serious policy implications for 
travel demand and air pollution. Consequently, it is important to accurately predict or estimate 
the preference for vehicle holdings of households as well as the vehicle miles traveled (VMT) by 
vehicle body- and fuel-type to project future VMT changes and mobile source emission levels. 
In past studies, there has been major discrepancy in the estimates of how much BEVs are being 
driven compared to ICEVs in a multi-vehicle household and thereby their likely contribution to 
emission reduction. All these prior studies on BEV usage are reduced-form models that do not 
consider vehicle choice and VMT in an integrated framework. VMT estimation conditional on 
choice of a vehicle may also suffer from endogeneity concerns; households who drive more 
may be more gasoline price sensitive. As a result, they may also prefer BEVs and PHEVs that 
offer cost savings. The current report presents the application of a utility-based model for 
multiple discreteness that combines multiple vehicle types with usage in an integrated model, 
specifically the multiple discrete continuous extreme value (MDCEV) model. We use the 2019 
California Vehicle Survey data here that allows us to analyze the driving behavior associated 
with more recent plug-in electric vehicle (PEV) models (with potentially longer range). Here, 
PEVs include BEVs and PHEVs. Important findings from the model include:  

• From the vehicle choice perspective, the MDCEV model suggests that on average 
households have an inherent preference for internal combustion engine vehicles (ICEVs) 
compared to EVs in the vehicle segments with all three powertrains (BEVs, PHEVs, and 
ICEVs). 

• Considering vehicle usage, the MDCEV model suggest that when EVs of a certain body 
type exist in a household fleet, on average, households tend to reach satiation later for 
EVs than ICEVs from the same vehicle segment. This suggests that EVs and ICEVs have 
comparable usage in a multi-vehicle household.  

• Household characteristics like size or having children have expected impact on vehicle 
preference: larger vehicles like vans and SUVs preferred, primarily ICEVs and PHEVs. 

• College education, rooftop solar ownership, and number of employed workers in a 
household affect the preference of BEVs and PHEVs in the small car segment dominated 
by the Leaf, Bolt, Prius-Plug-in and the Volt often used as a commuter car. 

• Among built environment factors, population density and walkability index of a 
neighborhood have a statistically significant impact on the type of vehicle choice and 
VMT. It is observed that a 10% increase in population density reduces the preference for 
ICEV pickup trucks by 0.34% and VMT by 0.4%. However, if the increase in population 
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density is 25%, the reduction in preference for pickup trucks is 8.4% and VMT is 8.6%.  
The other built environment factor we consider is the walkability index. If walkability 
index of a neighborhood increases by 25%, it reduces the preference for ICEV pickup 
trucks by 15% and their VMT by 16%. Overall, these results suggest that if policies 
encourage mixed development of neighborhoods and increase density, it can have an 
important impact on ownership and usage of gas guzzlers like the pickup trucks and help 
in the process of electrification of the transportation sector. 

The model developed here using the 2019 California Vehicle Survey data suggests that though 
households may still have an inherent preference for ICEVs compared to BEVs and PHEVs in the 
vehicle segments where all three are available, when EVs are chosen they have a comparable 
usage. This result supports the need for incentive policies to encourage EV adoption and 
policies that encourage longer electric range EVs. Considering EVs entering the market continue 
to have improved electric range, one can expect EVs to increasingly have more comparable 
usage to ICEVs in a household. Further, the results related to household characteristics and 
built environment factors can  inform California’ state travel demand models and emission 
prediction models accounting for changes in vehicle preference and VMT as EVs penetrate the 
market. Moreover, the scenario analysis results here can be used to understand the impact of 
land-use and transportation policies on household vehicle holdings and usage that can in turn 
impact travel demand and air quality issues in the state. 
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Introduction 

In the United States, in 2020, transportation sector was the highest emitter of greenhouse gas 
(GHG) emissions, accounting for over 27% of the total emissions, with light-duty passenger 
vehicles being a major contributor (57%)(1) . Light-duty vehicles also emit criteria pollutants 
which contribute to poor air quality.  This has led policymakers both at the federal and state 
level to push for programs and regulations that encourage a transition from internal 
combustion engine vehicles (ICEVs) to battery electric vehicles (BEVs) and plug-in hybrid electric 
vehicles (PHEVs), collectively referred to as plug-in electric vehicles (PEVs). California has a 
target of 5 million ZEVs (PEVs and Fuel Cell Electric Vehicles) on the road by 2030, and 100% of 
new vehicle sales being zero emission by 2035 (2). Based on the average carbon intensity of the 
California grid these 5 million PEVs are expected to release on average 20.8 million fewer 
metric tons (MMT) of well-to-wheel carbon dioxide equivalent (CO2e) than 5 million ICEVs 
(operating at an average of 24.3 miles per gallon [mpg]), which is 5% of total GHG emissions in 
California (3).  These vehicle emission estimates are based on average driving behavior and 
average fuel efficiency estimates, not accounting for heterogeneity in travel behavior or the 
possibility of a rebound effect (i.e., increased driving due to decreased vehicle operating costs 
per mile). In practice, the emissions benefit of BEVs and PHEVs is related to how many gasoline 
miles are substituted by electric miles, where and when the PEVs are charged, and for PHEVs 
how many miles are driven using the electric motor vs. internal combustion engine. 

In general, one may expect PEV adopters who trade off higher purchase prices for lower 
operating costs to maximize their electric miles. Critics have argued that in addition to replacing 
gasoline miles with electric miles, if lower operating costs however led to increased driving, i.e., 
the rebound effect, it would offset some or all the anticipated GHG emissions reductions. The 
severity of the concern is generally higher for PHEVs with a limited electric range and the 
capability of being driven as a gasoline vehicle. Multiple studies have focused on the topic of 
“rebound effect” for the conventional fuel vehicle market analyzing consumer sensitivity to 
operating costs and vehicle choice/use (4–8) . Along with operating costs, past studies on 
household vehicle usage of ICEVs, have analyzed the impact of built environment factors (9, 
10), and the inter-relationship between emission reduction policies, vehicle choice, and 
VMT(11–14). 

The relationship between operating costs and vehicle usage and in general the potential for 
interactions between vehicle technology characteristics and VMT impacts are in general more 
complex for PEVs. Though there is a good understanding of the factors that encourage PEV 
adoption, the impact of the vehicle technology on VMT is far from clear. There are 
contradictions in the findings of past studies, depending on the type of PEV and the vehicle 
models studied. Analyzing the VMT of PEV owners from the 2017 National Household Travel 
Survey (NHTS), Davis (2019) finds that the average annual VMT of PEV owners is 30% lower 
than other fuel type vehicles. On the other hand, an analysis done by the Electric Vehicle 
Research Center for the California Air Resource Board show that PEVs are driven as much as 
gasoline cars not less (due to range anxiety) as some have suggested). Moreover, PEV VMT is 
found to be correlated with traditional factors like population density, built environment, 



 2 

attitudes towards technology, and lifestyle preferences. Specific to PEVs, electric driving range 
household electricity price, and access to infrastructure, have a major influence on PEV VMT. 
Based on the 2019 California Vehicle Survey data, similar factors were identified influencing 
VMT of PEVs in the study by Jia and Chen (15).Both these studies offer a simplistic analysis of 
PEV use either treating the VMT decision independent of the characteristics and usage of other 
vehicles in the household fleet or/and independent of the choice of the PEV itself. In either 
case, the endogeneity concern related to the link between VMT, and vehicle choice remains 
unaddressed. 

Focusing on vehicle-owning households in California, using the 2019 California Vehicle Survey, 
this study analyzes the choice of vehicle technology and its usage in a joint model, namely the 
Multiple Discrete Continuous Extreme Value (MDCEV) choice model. The discrete component of 
the model allows us to estimate the choice of vehicle by body and powertrain type while the 
continuous part is to estimate the usage as a function of sociodemographic characteristics of 
the household and built environment characteristics of the household’s residential zip code. 
The joint model of vehicle choice and VMT will give a more accurate measure of the effect of 
drivers of vehicle choice and use compared to the existing models focusing on the question of 
VMT of PEVs as it estimates the vehicle choice and usage behavior simultaneously within a 
utility framework. Nevertheless, this model does not consider the endogeneity concerns 
associated with the choice of home location/ density of the residential location and vehicle 
choice or usage (self-selection issue). While it is an important concern, past literature on this 
self-selection issues have not found any significant effects of residential self-selection once a 
rich set of covariates is controlled for(16).  Moreover, in terms of choice of residential location 
and vehicle use, statistically significant but quantitatively small impact of residential density on 
household vehicle usage and fuel consumption(17, 18). 

Considering the GHG emission reduction targets and PEV adoption goals in California set by 
Senate Bill (SB) 32, ongoing policy efforts targeted towards auto manufacturers, and adoption 
trends, one can expect to see a rising share of PEVs in the vehicle fleet. Understanding the 
factors that influence driving behavior of PEV drivers will help to refine emissions impact 
assessment of these alternative fuel technology vehicles. A robust understanding of travel 
behavior of PEV drivers is also required to evaluate the efficiency and incidence of pricing 
mechanisms like the gas tax, mileage-based tax, or alternative mechanisms like a registration 
fee for PEVs. Finally, as the market for PEVs and PEV technology evolves, a better 
understanding of PEV VMT compared to ICEVs will become important for improving existing 
models for VMT analysis and forecasts like DynaSim, the California Statewide Travel Demand 
Model (CSTDM) or EMFAC used by California for travel demand and energy-use forecasting that 
are currently not well-developed to account for PEV penetration and potential changes in travel 
behavior. 

The rest of the report is structured as follows. In Section 2 we briefly review the literature 
related to vehicle choice and VMT and the factors related to PEV usage. Next, in Section 3 we 
give a description of the survey data and the MDCEV model used to analyze the impact of the 
determining factors on the choice of vehicle and VMT. Findings from the econometric models 
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are described in Section 4. Finally, we discuss the policy implications of the findings and the 
conclusions in Section 5 and Section 6 respectively.  

Literature Review 

Exploring factors that impact household and vehicle-level VMT has been a topic among 
researchers and policymakers for several decades, mainly due to the contribution of VMT to 
traffic congestion, emissions, and energy/fuel consumption. In the field of travel behavior, 
extensive research has been done on the impact of population density, built environment 
factors, land use characteristics, social network, spatial dependency, socio-demographics, and 
macroeconomic conditions on household and personal VMT (19–22). In addition, several 
studies have analyzed the impact of self-selection, namely the interaction between VMT and 
choice of residential location, neighborhood characteristics, or the type of vehicle (10, 23, 24). 
In a recent study, Singh et al. (25) analyzed the relative contribution of these factors on 
household VMT and found that socio-demographic variables explain 12% and self-selection 
effects account for 11% of the household VMT. They found 44% of the household VMT was 
unexplained and called for further research on the topic. Earlier analysis of residential location 
choice, primarily density and VMT have however found a statistically significant but small effect 
on VMT and consequent fuel consumption(18). 

The economics literature investigates consumer response to changes in fuel costs or fuel 
economy improvements (the “rebound effect”) in gasoline or hybrid vehicles. Controlling for 
macro-economic effects like employment rate along with most of the factors mentioned above, 
researchers have calculated fuel cost elasticity in terms of change in VMT at the regional-, 
household-, or vehicle-level (5, 26–29). On average, the elasticity or “rebound effect” is 
estimated to be 8-14% with considerable heterogeneity by vehicle type, vehicle age, and 
household income (7). A few studies have differentiated the travel behavior of single- and 
multi-vehicle households and found that in the latter household type, the potential for 
“rebound effect” depends on the composition of the household fleet (29). In general, unlike 
single-vehicle households, a multi-vehicle household has the opportunity to respond to fuel 
prices by shifting miles to more fuel-efficient vehicles in their fleet and past research has found 
evidence of such behavioral response to an increase in gas price (28).  

Fuel cost savings are generally a major motivation for the adoption of PEVs (30, 31). Using 
interstate variation in gasoline and electricity rates, Sivak and Schoettle (32) observed that for 
all the states in the US the average annual fuel cost of driving a BEV with electricity efficiency of 
33 kWh/100 miles is lower compared to an ICEV with an average fuel efficiency of 25 miles per 
gallon (32). Considering the motivation to purchase a PEV and the elasticity observed with fuel 
costs (7), one would expect that PEV owners would maximize the number of electric miles 
driven. However, there are contradictory findings in the literature in terms of PEV usage and 
VMT estimates. We could identify only a few studies that focus on PEV use and electric vehicle 
miles as a part of household travel demand. A recent study by Davis (33) using the 2017 NHTS 
data find that the average annual VMT of PEVs (descriptive analysis) is 30% lower than other 
fuel type vehicles (33). Burling et al. (34) also report that EVs are used less than expected based 
on the vehicle charging behavior of EV owners, raining questions about transportation 
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electrification as a climate policy. On the other hand, analysis by Tal et al. (35) found that PEVs 
are being driven as much as gasoline cars, more so when travel behavior of long-range BEV 
owners is taken into account. Similar results were also reported by Chakraborty et al. 
considering households in California with a mix of gasoline vehicles and EVs in their household 
fleet (3). Nicholas and Tal (36) analyzed the factors that can influence the VMT of BEVs in a 
household and found that electric range, vehicle characteristics like body type, access to 
infrastructure, and vehicle sharing all play a role in how many miles a BEV has been driven 
annually (36). PEV adoption is often motivated by symbolic attributes like self- environmental 
identity, personal environmental and technology-related beliefs, or attitude towards risk. Hasan 
and Simsekoglu (37) addressed the effect of these psychological factors on post-purchase use of 
PEVs by single- and multi-vehicle households. The findings indicate that PEV use (i.e., annual 
mileage) is more sensitive to economic factors in single vehicle but more sensitive to perceived 
operating barriers in multi-vehicle households. 

There are a limited number of studies on PEV use patterns due to a lack of reliable data on the 
travel behavior of PEV owners (38). Although the 2017 NHTS and 2019 CVS data offer 
researchers the opportunity to fill this gap in the literature it is essential to account for the 
characteristics of the sample of vehicles surveyed and the impact it may have on the VMT 
estimates. Early adopters of BEVs tend to have more vehicles in their household, are older, and 
more likely to be retired (39) all of which are correlated with lower VMT regardless of the 
vehicle technology owned. Further, the annual miles traveled estimate from the 2017 NHTS and 
the 2019 CVS publicly available data are based on single odometer readings (35). Using large-
scale travel survey data such as the NHTS and the Residential Transportation Energy 
Consumption Survey (RTECS), past research has found that compared to dual readings, single 
reported odometer readings can be unreliable, especially when the survey respondent is not 
the primary driver of the vehicle (6, 40). This study aims to address the limitations of prior PEV 
VMT studies by having a wider range of vehicle makes, models, and model years in the data 
sample, and by using odometer readings reported by households at two time-points to 
estimate VMT for PEVs. Compared to single odometer readings, dual odometer readings allow 
for more accurate VMT estimates as there are two data points to assess the validity of the self-
reported odometer readings. Unlike existing PEV VMT studies investigating only the number of 
miles these vehicles are driven, we analyze overall household VMT in a single-vehicle PEV-only 
household and the distribution of VMT between PEVs and non-PEVs in a multi-vehicle 
household. The analysis in this study offers a better understanding of how PEVs are integrated 
into the household fleet and the factors influencing its usage in households with different 
numbers of vehicles. 

Data and Methodology 

Data 

The analysis of vehicle choice and usage is done leveraging data from the California Vehicle 
Survey (CVS) administered by the California Energy Commission in 2019. As a result of the 
timing of the survey sampling and the survey itself, one may expect that the 2019 CVS data will 
capture the adoption and driving behavior of owners of second-generation EVs (longer vehicle 
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range than the first-generation EVs) better compared to the 2017 National Household Travel 
Survey data, previously used to analyze the VMT of EV owners (33). The 2019 CVS surveyed 
total 4,248 households. Respondents are sampled randomly from the California population. 
However, FCEV owners are oversampled in the survey to get adequate representation of these 
vehicle owners in the survey. Since, the latter were not part of the random sample, we drop 
them from the data used for analysis. Considering the research question, we consider 
households with one or more vehicles in their household fleet. This implies we drop the 112 
zero-vehicle households from the total sample.  

Respondents report the annual mileage for each vehicle in their fleet. Since, the odometer 
readings and the mileage estimate are self-reported there are issues like recollection bias or 
simple misreporting of the reading (e.g., adding extra zeroes to the VMT estimate or dropping a 
digit). However, one of the distinctive features of the 2019 survey was the collection of dual 
odometer readings by the CEC for a subsample of the respondents. Ideally, dual odometer 
readings should allow for accurate estimates of annual VMT than a single odometer reading by 
raising the chances of detecting misreporting of odometer readings. But even the dual 
odometer readings collected for the 2019 CVS had challenges – insufficient real-time editing, 
data collection over different time frames ranging from a few days to a few years (for those 
using maintenance records), and misreporting. To improve the self-reported annual VMT 
estimates per vehicle of the household in the main survey, first, we separated the good and the 
erroneous dual odometer readings and used the former to clean the reported annual mileage 
data for each vehicle in a household. Note, the dual odometer readings were converted to 
annual VMT before they were used to correct the reported annual mileage data, but the widely 
differing measurement windows did introduce additional measurement errors. Second, the 
vehicles classified in the survey data as non-qualifying (for example, recreational vehicles) were 
removed from the dataset and the total number of household vehicles were then re-estimated 
for the households with non-qualifying vehicles. Third, to account for vehicles than are rarely 
driven in a household (e.g., vintage vehicles), we flagged vehicles with less than 10% of the total 
household VMT when the number of household vehicles is greater than number of drivers and 
vehicles less than 5% of the household VMT when number of vehicles is equal to the number of 
licensed drivers. We dropped the flagged vehicles from the analysis data and then re-estimated 
the total number of household vehicles. For vehicles with reported miles greater than 100,000 
annual miles, we cap the annual mileage to 100,000. 

The data on household demographic variables included in the analysis like household size, 
home tenure, rooftop solar ownership, or number of children are drawn from the California 
Vehicle Survey. Environment Protection Agency’s (EPA) Smart Location Mapping Tool is used to 
control for built environment factors like population density and walkability index at the zip 
code level. 

Methodology 

While the interdependency between vehicle choice and miles traveled is well studied for 
gasoline vehicles with the help of multiple discrete continuous choice (MDCEV) models  and its 
variants, joint multinomial discrete-continuous choice models, discrete continuous 
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simultaneous equation systems, or the Bayesian Multivariate Ordered Probit and Tobit 
(BMOPT) model (41–46), studies focusing on VMT of PEV households have so far treated the 
choice of vehicle and VMT as independent decisions (3, 33). But as in the case of gasoline 
vehicles, when households make choices and usage decisions involving PEVs, these will be 
affected by a wide variety of factors (e.g., vehicle characteristics, other household vehicles, fuel 
cost changes, socioeconomic characteristics, changes in commuting needs, or built 
environment factors) that cause these decisions to be interdependent. In fact, because of 
fundamental differences in the operating characteristics of EVs (electric range, recharging 
requirements), such interdependencies are even more likely for EVs than for conventional 
vehicles.  

In this study, we estimate an integrated econometric model framework considering both 
discrete and continuous decision variables in the context of household vehicle ownership. A 
household may hold a mix of different vehicle types (e.g., sedans, vans, SUVs, or pickup trucks) 
or different vintages, and use the vehicles in different ways based on the preferences of 
individual members, considerations of maintenance and operating costs, and the need to 
satisfy various travel needs like commute trips, the ability to take long-distance trips, or 
transport goods. Past studies on vehicle choice and usage in an integrated framework mostly 
dealt with only ICEVs. In the past decade, since EV adoption has increased it is essential to 
consider fuel/powertrain type in the choice decision Here we take into account three main 
choices: vehicle body type, fuel/powertrain type, and annual mileage traveled. Figure 1 gives 
the structure of the discrete-continuous model framework we estimate here. 

 

Figure 1. Structure of the integrated model 

The integrated model framework we estimate here is the multiple discrete-continuous extreme 
vale (MDCEV) model that is based on the utility- maximization theory. The model handles 
multiple discrete choices using a generalized variant of the translated constant elasticity of 
substitution (CES) utility function with a multiplicative log-extreme value error term that makes 
the model analytically tractable and represent the multinomial logit form-equivalent for 
multiple discrete-continuous choice analysis. Considering the scope of research here, 
households maximize utility 𝑈(𝑥) associated with the consumption of different alternatives 
(here, vehicle types) subject to a binding linear budget constraint (here, it is total household 
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VMT). The utility function is a function of the alternative specific constants associated with a 
vehicle type, household characteristics, and other factors that may impact the choice of a 
vehicle type and its usage like built environment factors or attitudinal constructs. Applying the 
Kuhn-Tucker approach, the utility function is assumed to be random over the population, the 
randomness being incorporated through an error term in 𝑈(𝑥).  

Let there be K different vehicle types (here, it is body type and fuel/powertrain type 
combination) that a household can potentially own and 𝑥𝑘 be the annual mileage of use for 
vehicle type k (k=1,2,3…, K). The utility accrued to a household is the sum of utilities obtained 
from using each type of vehicle as expressed below: 

𝑈(𝑥) =  ∑
𝛾𝑘 

𝛼𝑘

𝐾

𝑘=1

𝜓𝑘 {(
𝑥𝑘

𝛾𝑘
+ 1)𝛼𝑘 − 1} 

Where, 𝜓𝑘 > 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑘 represents baseline marginal utility of consumption of good k or the 
inherent preference for good k, higher value => higher preference for vehicle type k 

𝛾𝑘 > 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑘 determines the possibility of a corner solution, i.e., it is the translation 
parameter. It is also a satiation parameter, higher values => lower satiation effect in the 
consumption (miles driven) of vehicle type k. 

𝛼𝑘 ≤ 1𝑓𝑜𝑟 𝑎𝑙𝑙 𝑘 represent the satiation effect associated with consumption of good k or the 
rate of diminishing marginal utility from using a particular vehicle type k. Higher the value of 𝛼𝑘  
lower is the marginal utility with increasing consumption of vehicle type k. 

Here we estimate a MDCEV model assuming there is no outside good in the choice set of a 
household. In other words, corner solutions (zero consumption) are allowed for all the vehicle 
types. Moreover, both 𝛾𝑘 and 𝛼𝑘 affect satiation and from the point of view of model 
identification it is very difficult to estimate both the parameters in one model and disentangle 
their effects. Here, we estimate a 𝛾- profile model with a fixed value of 𝛼 = 0 ∀ 𝑘. 

The 𝛾- profile model with no outside good collapses to a linear expenditure system as below: 

𝑈(𝑥) = ∑ 𝛾𝑘𝜓𝑘𝑙𝑛 (
𝑥𝑘

𝛾𝑘
+ 1)

𝐾

𝑘=1

 

To adopt a random utility specification for the model, the MDCEV framework applies the Kuhn 
Tucker condition. As a result, the baseline marginal utility becomes: 

𝜓(𝑧𝑘 , 𝜀𝑘) = exp(𝛽′𝑧𝑘 + 𝜀𝑘) 

Where, 𝜀𝑘  captures the idiosyncratic or unobserved characteristics that impact the baseline 
utility for vehicle type k. 𝑧𝑘  represents the set of vehicle-type constants, household 
characteristics, and built environment factors. 
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Therefore, the final MDCEV model set up with no outside good that we estimate here is: 

𝑀𝑎𝑥 𝑈(𝑥) = ∑ 𝛾𝑘[exp(𝛽′𝑧𝑘 + 𝜀𝑘)]𝑙𝑛 (
𝑥𝑘

𝛾𝑘
+ 1)

𝐾

𝑘=1

 

Sub to: ∑ 𝑝𝑘𝑥𝑘
𝐾
𝑘=1 = 𝑇𝑜𝑡𝑎𝑙 𝐻𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑 𝑉𝑀𝑇, 𝑝𝑘 = 1 𝑜𝑟 𝑢𝑛𝑖𝑡 𝑝𝑟𝑖𝑐𝑒 𝑜𝑓 𝑘 

In addition to the MDCEV model, the authors also attempted the BMOPT model with the 2019 
CVS data used here. The model is composed of a multivariate ordered probit model for the 
discrete choices and a multivariate Tobit model for the continuous choice. The joint model is 
formulated with an unrestricted covariance matrix for the discrete and continuous parts. It is 
able to handle a large number of vehicles and captures the interdependence (correlation) 
between the number of vehicles and total miles driven in each type of category, with flexible 
specification of error terms. However,  considering the scope of the research here, the model 
set up required creating choice alternatives involving a combination of body and fuel type as 
done here. This created some categories with extremely low number of observations. 
Moreover, the computation became intensive for the large number of vehicle categories, as the 
number of equations to be estimated increased proportionally with the number of 
alternatives/vehicle categories. In other words, while it was possible to estimate the MDCEV 
model, there was identification challenges with the BMOPT model. Therefore, here we present 
results from the MDCEV model estimation. 

Model Estimation Results 

The MDCEV model accounts for the following choice decisions 

1. Combination of body type of vehicle and Fuel/Powertrain type of vehicle  
2. Number of miles traveled. 

In terms of combination of vehicle body type and fuel/powertrain type we consider 18 
categories: small-, mid-, large-car; sports car; small-, mid-, large-SUV; van; pickup truck in 
combination with ICEV, BEV, and PHEV powertrain-type. Gasoline, hybrid, diesel, flex-fuel, and 
CNG vehicles are combined under the ICEV category. 

After cleaning of the household fleet-level data and augmentation with built environment data 
at the zip code level from EPA’s Smart Location Database, 3,230 households remain in the 
analysis sample – 47% one-vehicle, 44% two-vehicles, and 9% three or more vehicles 
household. Table 1 lists the basic summary statistics of the vehicle body type-fuel type 
combinations in the household sample analyzed with MDCEV model. 
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Table 1. Summary statistics of vehicle body type- fuel type combinations 
 

Car SUV Van Truck 
 

Small Mid Large Sports Small Mid Large 
  

Freq. ICEV 1,144 1,043 196 213 977 442 111 207 486 

Freq. BEV 120 92 42  26     

Freq. PHEV 92 77 4  5   5  

Avg. VMT ICEV 10,056 10,204  9,454  6,289  10,579  9,985  10,651  9,394  9,659  

Avg. VMT BEV 9,359  11,903  12,757   10,299      

Avg. VMT PHEV 12,753  12,018  20,432   12,075    11,267   

The baseline utility for each of the vehicle body-type and powertrain combinations is assumed 
to be a function of the following demographic variables: household income, household size, if 
the household have children less than 16 year old, if the household has 2 or more employed 
workers, highest education level in a household is college graduate or not, if a household has 
solar or not, and if it is a single-family home or not. In the model, household income is 
interacted with dummy variables for the powertrain categories to estimate the income 
elasticity or the relation between household income and the utility derived from ICEVs and EVs. 
The utility derived from a vehicle type can also depend on certain built environment 
characteristics of a household’s neighborhood. In the model we include the following: 
population density, walkability index, job accessibility, public charger density, and if the 
household is in the San Francisco or Los Angeles County. Table 2 gives the basic summary 
statistics of the demographic variables included in the model and the definition of the built 
environment factors from the EPA Smart Mapping Tool. 
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Table 2. Summary statistics of the Demographic variables and Description of the Built 
environment Factors in the Model 

Household Demographic Variables Summary Statistics 

Household Income (US dollar) Average=$117, 345 
Household Size Average =2.1 

Have children (less than 16 years) 17.8% 

Two or more workers (full- or part-time) 27% 
Highest education level in the household 79% 

Have solar 15% 

Single-family home 66% 

Built Environment Factors Definition 
Population Density Gross population density (people/acre) on unprotected 

land; averaged to zip code 

Walkability Index Based on measures of the built environment that affect 
the probability of whether people walk as a mode of 
transportation: street intersection density, proximity to 
transit stops, and diversity of land uses. (Scores 1-20; 
averaged to zip code) 

Job accessibility Jobs within 45 minutes auto travel time, time- decay 
(network travel time) weighted; aggregated to zip code 

Public Charger Density Total Level 2 and DCFC chargers/Total land area (acres); 
area aggregated to zip code 

Residence Location (Los Angeles or San 
Francisco County) 

LA: 43%; SF=23% 

Results from the MDCEV model are reported in Table 3 and Table 4. Table 3 offers estimates 
for the baseline utility and the satiation parameters and Table 4 gives the coefficient estimates 
for the explanatory variables included in the model like demographic characteristics and built 
environment factors.  
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Table 3. MDCEV Estimation Results - Baseline utility parameter and Translation/Satiation 
parameters 

Parameter Coefficient t-ratio 

Baseline Constants   

Small Car- ICEV (baseline) 0   

Small Car- BEV -3.61 -6.11 

Small Car- PHEV -5.47 -7.36 

Mid Car-ICEV -0.14 -1.43 

Mid Car-BEV -3.78 -6.62 

Mid Car-PHEV -3.26 -5.23 

Large Car - ICEV -1.90 -9.98 
Large Car - BEV -6.02 -6.33 

Large Car - PHEV -8.14 -2.75 

Sport Car- ICEV -1.97 -11.51 

Small SUV- ICEV -0.21 -4.36 

Small SUV - BEV -4.93 -4.83 

Small SUV- PHEV -4.13 -2.39 

Mid SUV - ICEV -1.76 -11.13 
Large SUV- ICEV -3.94 -12.17 

Van - ICEV -3.12 -7.45 

Van- PHEV -11.35 -4.28 

Pickup Truck- ICEV 0.03 0.14 

Translation Parameters/Gamma Coefficient t-ratio 

Small Car- ICEV 17.35 12.66 

Small Car- BEV 16.11 5.06 
Small Car- PHEV 31.71 3.49 

Mid Car-ICEV 20.59 11.61 

Mid Car-BEV 23.71 4.02 
Mid Car-PHEV 26.50 3.55 

Large Car - ICEV 18.23 5.56 

Large Car - BEV 25.68 2.48 

Large Car - PHEV 112.38 0.61 

Sport Car- ICEV 6.88 7.52 

Small SUV- ICEV 19.91 11.63 

Small SUV - BEV 24.00 2.13 

Small SUV- PHEV 36.73 0.73 

Mid SUV - ICEV 16.35 9.05 

Large SUV- ICEV 13.84 4.82 

Van - ICEV 14.71 6.61 

Van- PHEV 40.05 0.64 

Pickup Truck- ICEV 10.21 10.51 
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Table 4. MDCEV Model Estimation Results: Explanatory Variables including Demographic 
characteristics and Built environment factors 

Explanatory Variables Estimate t-ratio 

Household Size     
Mid Car-ICEV 0.01 0.21 

Large Car-ICEV 0.02 0.26 

Van-ICEV 0.60 6.07 
Van-PHEV 1.72 2.68 

Mid SUV-ICEV 0.26 3.64 

Large SUV-ICEV 0.64 4.93 

Pickup Truck-ICEV 0.15 2.90 

Have Children (At least one family member <16)     

Van- ICEV 0.07 0.31 

Small SUV- ICEV 0.11 1.10 

Mid SUV – ICEV 0.51 3.24 

Large SUV- ICEV -0.26 -0.95 

College Education 

Small Car- BEV 0.90 2.17 
Mid Car-BEV 0.34 0.89 

Large Car - BEV 0.28 0.46 

Small SUV- ICEV -0.30 -1.27 
Small Car- PHEV 1.16 2.29 

Mid Car-PHEV 0.91 2.10 

Large Car - PHEV -1.14 -0.96 

Small SUV- PHEV 0.96 2.32 

Sport Car- ICEV 0.25 1.33 

At least two Full-time/Part-time workers  

Small Car- BEV 0.38 1.98 
Mid Car-BEV 0.26 1.20 

Large Car - BEV 0.00 0.00 

Small SUV- ICEV 0.10 0.25 

Small Car- PHEV 0.41 1.90 
Mid Car-PHEV -0.41 -1.58 

Large Car - PHEV -0.74 -0.64 

Household characteristics: Solar 

Small Car- BEV 0.91 4.51 

Mid Car-BEV 0.92 3.87 

Large Car - BEV 1.16 3.52 
Small SUV - BEV 1.60 3.86 

Household characteristics: Income Elasticity  

BEV -0.25 -5.69 

PHEV -0.16 -4.91 

ICEV -0.04 -2.19 
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Explanatory Variables Estimate t-ratio 

Household location: Los Angeles & San Francisco Region 

Small Car- BEV- LA -0.41 -1.43 

Mid Car-BEV - LA -0.35 -1.03 

Large Car - BEV - LA 0.70 1.46 
Small SUV - BEV - LA 0.04 0.07 

Small Car- PHEV- LA 0.79 2.52 

Mid Car-PHEV- LA 0.08 0.24 

Large Car - PHEV- LA -0.73 -0.44 

Small Car- BEV- SF 0.28 1.14 

Mid Car-BEV - SF 0.49 1.70 

Large Car - BEV - SF 0.84 1.81 
Small SUV - BEV - SF 0.93 1.78 

Small Car- PHEV - SF 0.45 1.38 

Mid Car-PHEV- SF 0.59 1.91 

Large Car - PHEV- SF -0.33 -0.22 

Small SUV- PHEV - SF -0.51 -0.43 

Built environment characteristics- Population density 

Small Car- BEV 0.02 1.81 
Mid Car-BEV 0.01 1.26 

Small Car- PHEV 0.00 -0.32 

Mid Car-PHEV -0.02 -0.77 
Pickup Truck- ICEV -0.04 -4.14 

Built environment characteristics- Walkability Index 

Small Car- BEV -0.56 -1.21 

Mid Car-BEV -0.04 -0.07 

Large Car - BEV 0.73 1.02 

Small SUV - BEV 0.31 0.35 

Small Car- PHEV 1.14 1.98 
Mid Car-PHEV -0.28 -0.48 

Large Car - PHEV 2.44 0.95 

Small SUV- PHEV -2.07 -1.08 
Van - ICEV -0.16 -0.59 

Pickup Truck- ICEV -0.70 -2.75 

Built environment characteristics- Job Accessibility  

Small Car- BEV 0.18 1.43 
Mid Car-BEV 0.24 1.77 

Large Car - BEV -0.10 -0.53 

Small SUV - BEV 0.00 0.01 
Small Car- PHEV -0.16 -1.28 

Mid Car-PHEV 0.11 0.69 

Large Car - PHEV 0.42 0.77 

Small SUV- PHEV -0.69 -0.81 
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Estimates from the MDCEV model can be interpreted as follows: 

Baseline constants (𝝍𝒌): represents the baseline utility associated with each of the vehicle 
body type-fuel type combination or the inherent preference for the alternatives. ICEVs have a 
greater baseline preference than BEVs and PHEVs for all body types. In case of mid-size car and 
small SUV though, PHEVs also tend to have a higher baseline preference than BEVs. In all other 
vehicle segments for which both BEVs and PHEVs are available, BEVs are preferred more than 
PHEVs. The negative sign on all the constants indicates a general baseline preference for small 
ICEV cars relative to all other vehicle body-fuel types. 

Translation parameters (𝜸𝒌): represent the satiation effect in a 𝛾 − 𝑝𝑟𝑜𝑓𝑖𝑙𝑒 model. It captures 
how much households prefer to drive a particular vehicle body-type and fuel-type combination. 
EVs have a higher translation parameter than an ICEV for the body types in which all three exist. 
This shows that even though households may have a baseline preference for ICEVs, except in 
the small car segment, for all other body types, when households have both EVs and ICEVs, 
they tend to put more miles on the former.  Sport cars have lowest value suggesting they are a 
specialized vehicle type and even though households may own these vehicles they tend to put 
less miles on these vehicles. 

Household Characteristics:  Larger households tend to have a higher baseline preference for 
Vans, SUVs, and pickup trucks, presumably because these vehicles are more spacious and 
comfortable for travel with bigger families. For potentially similar reasons, households with 
children (at least one adult le ss than 16-year-old) tend to prefer midsize SUVs. Households 
where at least one adult has a college degree, tend to have a strong baseline preference for 
BEVs and PHEVs in the small car, mid-size car and SUV segment. This follows the patterns 
reported in the EV adoption literature, high-level education positively correlated with EV 
adoption. Households with full-or part-time workers also show a preference for BEVs and 
PHEVs, potentially related to these vehicles being used for commute purposes that have 
shorter travel needs.  Households with solar tend to prefer BEVs over small car ICEVs. However, 
there can be potential endogeneity issues associated with this variable; households with 
preference for BEVs due to unobserved attitudinal constructs or other unobserved 
sociodemographic factors may also prefer solar and vice-versa. Finally, BEVs are associated with 
highest income elasticity. BEVs are more expensive than other powertrains/fuel types in any 
vehicle segment (body-type) and as expected the preference for BEVs is higher when household 
income is high. None of the interactions with single-family home were statistically significant. 

Built Environment Factors: Households with residence in LA county tend to prefer small car- 
PHEVs; potentially related to HOV lane use while households in SF county show preference for 
BEVs. The latter may be related to preference for technology in the SF area. Households in high 
population density areas tend to prefer small car BEVs but not pickup trucks; probably 
correlated with urban areas where there is lesser availability of parking locations and also the 
daily travel needs are more likely to be met by the range of currently available BEVs. 
Households in areas with higher walkability index do not prefer pickup trucks. Job accessibility 
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has impact only on mid-car BEVs. Charger density has no statistically significant impact on BEV 
or PHEV preference. 

The entire CVS sample is used for analysis here for in-sample estimation. The limited sample 
size does not allow splitting the data into a training and test sample that will allow a robust 
estimation of out-of-sample prediction accuracy. Moreover, the focus of analysis here is not on 
prediction, but explaining the factors associated with vehicle choice and usage in an integrated 
framework and illustrating how much EVs are used in comparison to ICEVs in the same vehicle 
segment. 

Model Application – Scenario Analysis with Built Environment 
Characteristics 

The MDCEV model estimated here can be used to determine the changes in vehicle type 
holdings and usage due to changes in independent variables over time. For example, past 
studies have shown that built environment factors like residential density or population density 
are associated with ownership of smaller vehicles and lower vehicle usage. Here we consider 
the impact of population density and walkability index on type of vehicle choice and VMT. The 
prediction method to assess the changes in vehicle ownership and use in response to changes 
in these built environment factors involve computing revised expected aggregate shares of 
different vehicle body-fuel type combinations and the total miles of usage of each combination, 
and then obtain a percentage change from the baseline estimates. 

It is observed that a 10% increase in population density reduces the preference for ICEV pickup 
trucks by 0.34% and VMT by 0.4%. However, if the increase in population density is 25%, the 
reduction in preference for pickup trucks is 8.4% and VMT is 8.6%.  The other built environment 
factor we consider is the walkability index. If walkability index of a neighborhood increases by 
25%, it reduces the preference for ICEV pickup trucks by 15% and their VMT by 16%. Overall, 
these results suggest that if policies encourage mixed development of neighborhoods and 
increase density, it can have an important impact on ownership and usage of gas guzzlers like 
the pickup trucks and help in the process of electrification of the transportation sector. The 
results of the scenario analysis reinforce the findings of past studies that built environment 
factors like population density or infrastructure for non-motorized travel can encourage choice 
of fuel-efficient vehicles and reduce VMT. This has consequences both in terms of pollution 
reduction and the externalities associated with increased VMT. 

Implication for State Travel Demand and Emission Prediction Models 

In California, the state travel demand models like the California State Travel Demand Model 
(CSTDM) and the emission model like EMFAC were designed primarily to capture travel demand 
and emissions for a fleet dominated by ICEVs, primarily gasoline vehicles. For example, the 
CSTDM does not differentiate travel demand by type pf powertrain. As the adoption level of 
BEVs and PHEVs continue to rise driven by demand-side incentive policies or supply-side 
regulations to meet the electrification goals of California, it is important to account for BEVs 
and PHEVs in the fleet-mix- what are the factors that drive baseline preference for these 
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powertrains and how much are they driven? It is observed that even if households may have a 
higher baseline preference for ICEVs, when they have a mix of EVs and ICEVs in their fleet, they 
tend to put comparable miles on the non-ICEV vehicle. This finding has consequences for both 
travel demand (in case there is a rebound effect due to lower operating costs of EVs) and 
emissions predicted by these state models. 

Discussion 

The results of the MDCEV model and scenario analysis indicate that the factors identified in 
prior literature affecting vehicle choice and usage patterns for ICEVs continue to be important 
in determining choice and VMT of EVs – household characteristics like size, education, income, 
or built environment factors like population density and the type of development (mixed or 
not). Additional household characteristics like ownership of roof top solar has an impact on EV 
ownership. In terms of vehicle usage, the results of the satiation factor show that the vehicle 
segments where all three powertrains are available, ICEVs, BEVs, and PHEVs, PEVs are used a 
comparable amount as ICEVs. The latter result is aligned with the findings of Tal et al. and 
Chakraborty et al.(35, 47); both studies based on data from a cohort survey of owners of EVs of 
different generations and therefore different range. However, compared to the econometric 
models presented in these papers or those in the study by Davis, L. and Chen et al., the analysis 
here accounts for the potential endogeneity issue associated with vehicle choice and VMT (15, 
33). The analysis presented here is unweighted since the weights for the 2019 CVS data were 
not created as part of the survey data collection, but was a post survey analysis using the 
American Community Survey data. 

The MDCEV model does not allow us to identify usage of individual vehicles at the household-
level; the analysis focuses on the type/ category of vehicle as owned by households. As a result, 
it can be used to predict the VMT of different vehicle categories as identified in this analysis 
(body-type and fuel-type combination) but forecasting is out of scope of this project. Moreover, 
given the nature of the budget constraint in the current model set-up, the total household 
VMT, it is difficult to estimate the “rebound effect”. Future model specifications, currently 
being developed by the team, will move away from using total household VMT as the budget 
constraint to an expenditure based MDCEV model. This will allow us to account for vehicle-
specific attributes that may affect vehicle choice and usage as well as can potentially capture 
the impact of vehicle operating cost on VMT.  

Conclusions 

The increasing diversity of vehicle type holdings and growing demand for BEVs and PHEVs have 
serious policy implications for travel demand and air pollution. Consequently, it is important to 
accurately predict or estimate the preference for vehicle holdings of households as well as the 
vehicle miles traveled by vehicle body- and fuel-type to project future VMT changes and mobile 
source emission levels.  The current report presents the application of a utility-based model for 
multiple discreteness that combines multiple vehicle types with usage in an integrated model, 
specifically the MDCEV model that answers the research question “what are the factors related 
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to PEV choice and usage” while addressing the endogeneity concern. Important findings from 
the model include:  

• Household characteristics like size or having children have expected impact on vehicle 
preference- larger vehicles preferred. 

• College education, rooftop solar ownership, and number of employed workers in a 
household affect the preference of BEVs and PHEVs in the small car segment dominated 
by the Leaf, Bolt, Prius-Plug-in and the Volt often used as a commuter car. 

Among built environment factors, population density and walkability index of a neighborhood 
have a statistically significant impact on the type of vehicle choice and VMT.  

Considering vehicle choice and VMT in an integrated framework, the result of the analysis here 
suggests that along with some EV-specific factors like ownership of rooftop solar, usual factors 
that influence choice of ICEV vehicle types tend to impact the choice of PEVs as well in different 
vehicle segments- household and built environment characteristics. Moreover, the descriptive 
analysis of the 2019 CVS survey data show that compared to gasoline vehicles that are annually 
driven for 10, 057 miles, short-range BEVs are driven 9,122 miles and long-range ones are 
driven for 10,377 miles. The comparable usage of PEVs, including BEVs is supported by the 
satiation factors estimated by the MDCEV model here. Lastly, the joint modeling of vehicle 
choice and VMT here allows us to account for the fact that VMT estimation conditional on 
choice of a vehicle may also suffer from endogeneity concerns; households who drive more 
may be more gasoline price sensitive. As a result, they may also prefer BEVs and PHEVs that 
offer cost savings.   
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Data Summary  

Products of Research  

No new data was collected for this research. We used publicly available data sources: the 2019 
California Vehicle Survey administered by the California Energy Commission and Environmental 
Protection Agency’s Smart Mapping Tool 

Data Format and Content  

The data was analyzed in R- Studio and it is in a CSV file, available on the Dryad data repository. 

Data Access and Sharing  

The data used for analysis is available on the Dryad data repository. 

Reuse and Redistribution  

The data used for analysis can be downloaded from Dryad and used for analysis by the public. 
There is no identifiable information in the CSV file. The data should be cited as follows: 

Chakraborty, Debapriya (2023). Role of vehicle technology on use: Joint analysis of the 
choice of plug-in electric vehicle ownership and miles traveled [Dataset]. 
Dryad. https://doi.org/10.25338/B8C64G 

https://doi.org/10.25338/B8C64G
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