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ABSTRACT
This review serves as a guide to improve multi-
species fish passage. Human development along 
waterways in California during the last 160 
years has adversely affected fish populations 
in many watersheds. Conflicts in water usage 
will only intensify with modern developments 
and population growth. Since most past fish-
passage improvement efforts in California have 
focused on salmonids, I summarize the published 
studies and considerations that affect multi-
species fish passage. To be effective, conditions 
in fishways need to meet the specific hydraulic 
requirements, as well as abilities, behavior, 
and size consideration for all fish species being 
considered. Turbulence, water depth, velocity, 
passage location, and design of a passage facility 
are essential elements to successful fish passage. 
Because of a lack of research on most of the 
native species, species-specific passage criteria 
are not fully defined, and it may be helpful to 
use data for physically similar, surrogate species 
found in similar habitats. 

KEY WORDS
Fish ladder, fish passage, lamprey, multi-species, 
native fish, passage behavior, shad, sturgeon, 
water turbulence, water velocity.

INTRODUCTION
Many fish species undertake extensive 
movements and depend on barrier-free streams 
to access adequate spawning habitats and 
maintain their distributions. Migration passage 
of anadromous or potamodromous fishes in most 
large and small rivers is impeded by a variety of 
modifications such as water-diversion structures, 
stream bed alterations, floodplain channelization, 
dams, and weirs (Rochard et al. 1990; Sheer and 
Steel 2006; Brown et al. 2013). Native fishes 
in California have experienced significant 
population declines that correlate to the degree 
of artificial modification of the waterway and 
passage impairments experienced over 150 
years (Moyle 2002; Katopodis and Williams 
2012). Habitat connectivity through improved 
fish passage is one important component of the 
conservation of stream-resident and anadromous 
fishes (Labbe and Fausch 2000; Dobbs et al. 2004; 
Jager et al. 2016).

Fish ladders in North America date back 
200 years. Designs were developed to mimic 
conditions in which the fish were found. Most 
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fish-passage facilities designed by state and 
federal agencies of the Pacific states and British 
Columbia, Canada, were designed for salmonid 
passage (see “Additional Resources”) and have 
led to the development of five main types 
of fishways: pool-and-weir, baffle, vertical-
slot, natural bypass, and fish elevators. Many 
variations of these types of structures have 
been built, many don’t work as planned or limit 
passage of target species, and few have been 
planned or built to protect the diverse ecology of 
the stream (Brown 1991; DVWK 2002; Thiem et 
al. 2011). 

Little is known about the behavior and passage 
needs of non-salmonid North American native 
fishes (Katopodis and Williams 2012). Fish ladders 
designed specifically for migrating salmonids may 
impede passage of other fish species (Katopodis 
and Williams 2012). For instance, 28.7% inclined 
Denil fishways 0.56 m wide and longer than 15 
m at a flow of 0.16 m3 s–1 impede the passage of 
American Shad Alosa sapidissima and Northern 
Pikeminnow Ptychocheilus oregonensis (Slatick 
and Basham 1985). Most fish-passage structures 
are ineffective for sturgeons and lampreys to pass 
through because of these species’ sizes, behaviors, 
and physiologies (Daigle et al. 2005; Thiem et al. 
2011; Goodman and Reid 2017; Katopodis et al. 
2019). 

The following summarizes the available data 
for two of the species groups thought to face 
the greatest passage challenges in the region: 
anadromous sturgeons and lampreys. I also 
examine other important non-salmonid fishes, 
the non-native anadromous American Shad 
Alosa sapidissima and native potamodromous 
fishes such as Sacramento Splittail Pogonichthys 
macrolepidotus, Sacramento Blackfish Orthodon 
microlepidotus, Sacramento Pikeminnow 
Ptychocheilus grandis, Sacramento Sucker 
Catostomus occidentalis, Hitch Lavinia 
exilicauda, and Hardhead Minnow Mylopharodon 
conocephalus. 

The overall emphasis is on California’s Central 
Valley watershed, the epicenter of many of the 
most serious resource-management issues in 

the region (Service 2007). Although I obtained 
substantial passage information from other 
geographical areas, the data should still be 
relevant to regional issues. 

STURGEON
Most species (23 of 28) in the Order 
Acipenseriformes, to which sturgeons belong, 
are at risk of extinction (Birstein et al. 1997; 
Katopodis et al. 2019). Blocked migratory routes 
and reduced availability of spawning habitat are 
probably the greatest factors that contribute to the 
population declines of most sturgeon species (Auer 
1996; Jager et al. 2016; Katopodis et al. 2019).

In the Pacific coastal waters from Mexico to 
Alaska, two species of sturgeon are found 
and both occur in California: White Sturgeon 
Acipenser transmontanus with populations 
declining (CDFG 2014), and the federally listed as 
threatened Green Sturgeon Acipenser medirostris 
southern distinct population segment (Fed Regist 
2009). 

Most adult sturgeons in a riverine environment 
tend to be strong swimmers and prefer deeper 
waters. As an example, adult Gulf Sturgeon 
Acipenser oxyrinchus desotoi, another riverine 
sturgeon that prefers swift waters for spawning, 
are found in waters with velocities near 2.5 m s–1 
(Cech and Doroshov 2004). Spawning White 
Sturgeon require deep areas in rivers with gravel 
or larger rocks along the bottom and swift water 
velocities of up to 2.8 m s–1 (Parsley et al. 1993; 
McCabe and Tracy 1994; Moyle 2002), mean 
water-column velocities from 0.5 m s–1 to 2.5 m s–1 
(Parsley et al. 1993), with near-bed laminar flow 
velocities averaging 1.7 m s–1 (Perrin et al. 2003). 
Green Sturgeon need spawning pools with fast 
waters and eddy flows in depths greater than 
3.0 m, and substrates ranging from clean coarse 
sand to bedrock (Moyle 2002).

Swimming Performance and Endurance
Warren and Beckman (1993) found that some 
White Sturgeon were able to use the fish ladders 
on the Columbia River that were designed for 
the smaller salmonids and had water velocities 
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of 2.4 m s–1 (Figure 1). This does not demonstrate 
that salmonid ladders are effective at passing 
sturgeon, just that individuals can ascend the 
ladders at those velocities. In reporting results of 
a metal flume study, Webber et al. (2007) suggest 
that for 2.0-m total length (TL) White Sturgeon 
adults, successful passage structures should 
incorporate rapid-velocity sections with flows of 
up to 2.52 m s–1 between somewhat slower sections 
of approximately 0.7 m s–1 for rest and recovery. 
That study was limited in its scope by its physical 
dimensions and a maximum velocity of 2.52 m s–1. 

Laboratory measurements of fish stress-related 
variables showed that adult White Sturgeon 
swimming 24 m against a current of 2.5 m s–1 
physiologically recovered within 24 h (Cocherell et 
al. 2011), like the pattern shown in Rainbow Trout 
(Milligan and Wood 1986). A study with Rainbow 
Trout found that they recover faster when held at 

sustained swimming speeds of 0.9 body lengths 
per second (BL s–1) compared to fish in still 
water (Milligan et al. 2000). This is equivalent to 
1.2 m s–1 for smaller migrating White and Green 
Sturgeon. However, laboratory swimming tests 
may not be comparable to the more complex 
environmental conditions and behaviors observed 
in the field (Castro-Santos 2004).

White and Green Sturgeon are thought to have 
swimming performance comparable to other 
riverine sturgeon of the same size (Adams et 
al. 2003; CDWR 2007; Katopodis and Gervais 
2016). Nonetheless, sturgeons were found to be 
one of the native riverine fishes to have the 
most difficulty ascending structures with high 
speed gradients and turbulent flows, even though 
the velocities do not exceed their capabilities 
(USFWS 1995). Migrating sturgeon are very 
large when compared to salmonids, with White 

a. Adams et al. (2003).
b. Bell (1990).
c. CDWR (2007).
d. Katapodis (1992).
e. Mesa et al. (2003).
f. Moyle (2002).
g. Peake et al. (1997).
h. Young and Cech (1996).

Figure 1  Relative swimming speeds of select California adult fishes
Bell’s Table Classes Literature classes by Webb (1975) and Beamish (1978)
Cruising speeds ~ (‘Sustained’ for more than 200 minutes)
Sustained speeds ~ (‘Prolonged’ for more than 0.33 minutes)
Darting speeds ~ (‘Burst’ for less than 0.33 minutes)

https://doi.org/10.15447/sfews.2020v18iss3art6
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Sturgeon reaching 3.2 m TL (Moyle 2002) and 
Green Sturgeon reported at 3.1 m TL (2013 email 
from M. Manuel, Pacific States Marine Fisheries 
Commission, to Z. Matica, unreferenced, see 
“Notes”); and are primarly a benthic-cruising 
“non-jumping” fish, so structures such as weirs or 
diversions, and fishways designed for salmonids, 
can impose significant constraints on sturgeon 
migration (Cech and Doroshov 2004; Webber et al. 
2007). 

As within most fish families (Figure 2), 
swimming speed and endurance in sturgeon 
generally increases with fish length (Wolter 
and Arlinghaus 2003; Katopodis and Gervais 

2016). Although sturgeon have lower endurance 
when compared to salmon and trout of the same 
size, adult sturgeon are much larger and have 
comparable endurance at sustainable swimming 
velocities to adult salmonids (Katopodis 1992; 
Peake et al. 1997; Katopodis and Gervais 2016). 
Field studies with adult 1.2-m-fork length (FL) 
Lake Sturgeon Acipenser fulvescens, a weaker 
swimmer than similarly sized young adult 
White Sturgeon, were found to be capable of 
swimming 100 m against a current of 1.1 m s–1 
and 6.0 m against a current of 1.5 m s–1 before 
needing a water velocity refuge (LeBreton 2004). 
Observations of radio-tagged White Sturgeon in 
San Francisco Bay by California’s Department 

of Fish and Wildlife (CDFG unpublished) 
and swimming performance studies in 
flumes have documented a sustained 
ability to swim against a 1.8 m s–1 current 
and short bursts of up to 2.4 m s–1 to 
3.7 m s–1 (Katopodis 1992; Peake et al. 
1997; Katopodis and Gervais 2016). In a 
laboratory flume, adult (1.5-m FL) White 
Sturgeon swam at 2.57 m s–1 for 20 m 
(Cocherell et al. 2011).

LAMPREY
All Pacific North American lamprey 
populations are spotty, in low numbers, 
and have been negatively affected by 
stream habitat degradation, water pollution, 
water diversions, water temperature 
increases, and migration impediments 
(Beamish 1980; Moyle et al. 2009). The 
US Fish and Wildlife Service (USFWS), in 
collaboration with Native American tribes 
and other federal, state, and local agencies, 
recognized the need for a comprehensive 
plan to conserve and restore Pacific 
Lamprey, by creating the Pacific Lamprey 
Conservation Initiative, with California a 
signatory. 

Only Pacific Lamprey Entosphenus 
tridentata and River Lamprey Lampetra 
ayresii are anadromous in California and 
addressed in this report. Data suggest that 
these lampreys migrate in surges at night Figure 2 Models of burst speed and critical speed of fishes compiled 

from various studies. Source: Wolter and Arlinghaus (2003).
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during elevated flows after a winter rain with 
a large spring run and a smaller fall run, and 
construct gravel nests at the head of riffles where 
water velocities are 0.2 m s–1 to 0.85 m s–1 and 
depths are 0.3 m to 1.5 m (Moyle et al. 2009). Little 
information is available on the River Lamprey. 

Passage Observations from the Wild  
and Fishways
A key consideration for lamprey passage is their 
ability to squeeze through small spaces, ascend 
vertical or near-vertical structures by attaching to 
smooth surfaces, and their nocturnal lifestyle. The 
single most important factor that affects passage 
success appeared to be water velocity (Figure 1). 
While lampreys key in on some turbulence, they 
have difficulty negotiating fishways as a result 
of turbulence and water velocities that exceed 
1.2 m s–1 (Mesa et al. 2003; Moser et al. 2005; Kirk 
et al. 2017). 

Entrances at the lower Columbia River dams, with 
approximately 0.46 m of hydraulic head, passed 
no more than 1 out of 10 lamprey successfully 
(Zobott et al. 2015). Decreasing the head level 
at the entrance to 0.152 m increased nighttime 
passage rates by 39%. Reducing flows at 
entrances produced the most notable improvement 
in lamprey movement (Katopodis and Gervais 
2016). Clay (1995) found that velocities at fishway 
entrances usually approach or exceed 2.0 m s–1, 
surpassing the swimming abilities of these fish. 
When confronted with high velocities, adults use 
their suctorial disc to hold fast to the substrate, 
surge forward, then reattach, and rest between 
intervals of burst swimming. This saltatory mode 
of movement is most pronounced in velocities 
greater than 0.6 m s–1 (Daigle et al. 2005; 
Katopodis and Gervais 2016).

While rounding the entrance edges of structures 
to a minimum radius of 0.102 m significantly 
improved lamprey entrance efficiency, passage 
times, and passage by 30% (CRBLTW 2004), the 
addition of attachment plates in the transition 
area produced equivocal results (Daigle et al. 
2005). Laboratory experiments indicated that 
attaching a 0.305-m-wide metal plate over the 
grating (diffuser plates) allowed lamprey to 

attach near, and pass through, an orifice opening 
with > 2.4 m s–1 velocity flow (Daigle et al. 2005; 
Figure 3). In a field study of a pool-and-weir 
fishway designed to pass lamprey, Ackerman et 
al. (2019) found that with rounded corners with 
a radius of 1.15 m, flush-mounted weir gates, 
chamfered corners, and flush orifices, passage 
efficiency ranged from 84% to 98%. Daigle et 
al. (2005) found that few lampreys passed a 
weir using the overflow section, although those 
that did so passed the weir more quickly, in 
38 s, than those passing via submerged orifices, 
averaging 3 m 20 s (Figure 3). They also found 
that the presence of steps, seams, or other surface 
irregularities at the base of orifices inhibited 
passage.

Providing lower-velocity paths for passage 
appears to be beneficial for adult lampreys. For 
pool-and-weir type fishways, the addition of 
velocity refuges within orifices, by securing 
artificial rocks to the bottom, decreased the 
amount of time that lampreys took to pass 
through the orifice, and increased the proportion 
that made use of the orifice, although overall 
passage rate was unaffected by the addition of 
refuges (Daigle et al. 2005; Figure 3). Without 
refuges in place, 92% of lampreys passed all 
three of the Daigle et al. (2005) test weirs in 
2-hour trials, and 66% of lampreys passed in 
1-hour trials. Refuges at orifices reduced flows 
at the base of the orifice from about 2.0 m s–1 
to 1.0 m s–1, allowing more fish to pass via the 
orifice.

Bunches of plastic bristles affixed to the base of 
the Isohaara fishway in the Kemijoki River in 
northern Finland were used to reduce velocities 
through the vertical-slot section (Laine 2001) 
and help the passage of European River Lamprey 
L. fluviatilis. Hard plastic bristles or natural or 
synthetic branches have also been used on sloped 
ramps to help catadromous eel migrate (Clay 
1995). In these designs, the elvers undulated their 
way up the ramp in much the same way a snake 
would climb a slope.

Goodman and Reid (2017) found that improved 
pool-and-weir fishways provide a low passage 

https://doi.org/10.15447/sfews.2020v18iss3art6
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at 2 °C (Beamish 1974). A workshop report by T. 
McAuley (as cited in C. Katopodis et al. 1994) 
states that Sea Lamprey at 14 °C to 20 °C have 
a maximum sprint velocity of 4.0 m s–1 with an 
endurance of 30 s at a water velocity of 1.6 m s–1 
(Figure 4), and that at 10 °C endurance was the 
inverse of the cube of swimming velocity. The 
endurance curve improves substantially as water 
temperatures increase. However, lamprey have 
limited endurance compared to teleost fishes 
(Katopodis and Gervais 2016).

AMERICAN SHAD
Shad, an introduced species, are included in this 
paper because they are a popular sport fish and 
are important as a food source to the recovery 
of sturgeon and salmon populations (Close et al. 

efficiency at 44% with an average passage time 
of 5.2 h, while a lamprey passage structure (LPS) 
tube and culverts provided the highest efficiency, 
with average times of 0.26 h. Also, modifying a 
dam fishway with a variable-width weir and flow 
disruptors created velocity heterogeneity but did 
not improve passage, although installing an LPS 
saw a significant increase in lamprey passage 
success (Moser et al. 2019).

Swimming Performance and Endurance
Pacific lampreys have critical swimming speeds 
(Figure 1) of about 0.85 m s–1 (Bell 1990; Mesa 
et al. 2003), and swimming speed is positively 
related to temperature (range 5 °C to 15 °C). For 
example, the maximum sustained swimming 
speed of adult Sea Lampreys Petromyzon marinus 
at 15 °C is about 0.35 m s–1, but only 0.23 m s–1 

Figure 3  Diagram showing placement and structure of overflow weirs, orifices, a diffuser panel, and velocity refuges in an 
experimental pool-and-weir fishway. Source: Daigle et al. (2005).
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2002; UCWSRT 2002). Two species (Threadfin 
and American) are found in the northeastern 
Pacific from Canada to Mexico. This discussion 
focuses on American Shad Alosa sapidissima 
(Shad), introduced to California in 1871 and to the 
Columbia River in 1885, its population in decline 
for years (Lochet et al. 2009). 

Shad are found from March through June, 
correlating to rises in temperatures and river 
outflows (Quinn and Adams 1996), in many of 
the streams and rivers that support anadromous 
fishes (Moyle 2002). Shad are relatively strong 
swimmers (Figure 1) and preferred spawning 
habitats deeper than 1.0 m and with velocities less 
than 1.0 m s–1. However, Shad also ascend high-
velocity shallow riffles with depths equal to their 
body depth (Haro et al. 2004). 

Passage Observations from the Wild  
and Fishways
Because of their strong schooling behavior, Shad 
are reluctant to separate at structures or in high-
velocity zones (Larinier and Travade 2002). Shad 
do not leap when ascending water drops, but 
instead sprint through in the upper water column 
(Larinier and Travade 2002; Haro et al. 2012). 

Shad have difficulty ascending fish ladders and 
may be stopped by even a relatively low dam 
with a fish ladder (CDFG 2007). In observations 
on the Columbia River, Shad were found to be 
reluctant to enter submerged orifices in a fishway 
(Monk et al. 1989). Unlike salmonids, Shad and 
most other species have much more difficulty in 
dealing with the helical current patterns inside 
baffled fishways (Larinier and Travade 2002) 
and prefer laminar or streaming flows. They 
mostly avoid flows with significant turbulence, 
air entrainment, hydraulic jumps, and upwelling 
(Larinier and Travade 2002).

Shad do attempt passage through existing fish 
ladders, but the duration of passage is highly 
variable and can affect survival (Lochet et al. 
2009). On the Columbia River, Shad can pass 
through Denil fishways up to 11.9 m long (Slatick 
and Basham 1985), but stop in longer fishways, in 
holding ponds, and at fishway turns (Haro et al. 
2012). Passage success rates at most fish-passage 
structures are low (Lochet et al. 2009; Haro et al. 
2012). Modifications to fishways on the Columbia 
River with partial-width overflow slots and/or 
partial-depth side slots greatly improved Shad 

Figure 4 Comparison of swimming endurance of 45-cm-long Sea Lamprey to that 
of adult migratory fish common to the Great Lakes basin. Source: T. McAuley, as 
cited in Katopodis et al. (1994).

https://doi.org/10.15447/sfews.2020v18iss3art6andAmerican
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passage and benefitted salmonid passage (Monke 
et al. 1989; Petersen et al. 2003).

Swimming Performance and Endurance
In an open-channel flume study, 86% of Shad 
in the staging area entered the flume when the 
velocity was 1.74 m s–1, and 71% entered when the 
velocity was 3.43 m s–1 (Haro et al. 2012). Shad 
can swim at burst speeds of up to 20 BL s–1 for 
4.5 s (Castro-Santos 2005; Katopodis and Gervais 
2016), exceeding the burst speed, relative to body 
length, of salmon. In laboratory open-channel 
flume studies with very little turbulence, Haro et 
al. (2004) found that Shad can sustain a velocity 
of 4.5 m s–1 for approximately 5 m. Weaver (1965) 
found they can sustain 4.15 m s–1 for 6.1 m, and 
3.47 m s–1 for 19.8 m.

SACRAMENTO SPLITTAIL
Only one species of splittail minnows is in 
California; the potamodromous Sacramento 
Splittail Pogonichthys macrolepidotus (Splittail). 
It is endemic to the low-elevation river channels 
below valley rim dams of the Central Valley 
and San Francisco Bay (Young and Cech 1996; 
Sommer et al. 2008). Splittail, in a long-term 
decline (Moyle 2004), was listed as threatened in 
1999, but the USFWS remanded this in 2003 as a 
result of improved information about the species 
(Fed Regist 2003; Sommer et al. 2007).

Most Splittail migrate upstream between January 
and March during high flow events (Moyle et al. 
2004; Sommer et al. 2014). Field studies suggest 
that they prefer shallow water habitats of 0.9 m to 
6.7 m deep (Meng and Moyle 1995; Sommer et al. 
2002; Sommer et al. 2008).

Swimming Performance
Splittail are strong swimmers but it is unclear 
if they can effectively use existing salmonid 
fishways (Moyle et al. 1995). The critical 
swimming velocity of adults (Figure 1) is 
interpolated from the literature at up to 1.37 m s–1 
(3 BL s–1) (Young and Cech 1996). Danley et al. 
(2002) measured Splittail (age-0, 4-cm to 7-cm 
standard length) swimming velocities of up to 
0.523 m s–1 in a laboratory flume. Young and 

Cech (1996) also report that they can tolerate 
holding velocities of 0.305 m s–1 to 0.913 m s–1 in 
laboratory conditions. No literature was found 
that defined Splittail’s prolonged swimming 
interval, burst swimming limit, or endurance 
criteria. 

OTHER NATIVE FISHES
Although there are no published studies on 
swimming or passage performance for other 
adult native minnows (Hardhead, Hitch, and 
Sacramento Pikeminnow), some patterns can be 
inferred from anecdotal information, observations 
by the author, assumptions from surrogate data, 
and from physiological studies on juveniles. In 
natural conditions, Hardhead and Sacramento 
Pikeminnow are commonly observed swimming 
near the bottom alongside salmonids and prefer 
the swifter waters of riffles and the glides at the 
tail end of pools (personal observation). Waters 
in these areas are typically in the 0.6-m-s–1 to 
1.2-m-s–1 range. Katopodis (1992) noted that 
swimming performance is generally similar 
across species relative to size, when fish are 
grouped by swimming physiology (Katopodis 
and Gervais 2016). Limited information is 
available on the Sacramento Sucker, generally 
found in slower waters than the Sacramento 
Pikeminnow (Figure 1) and could suggest that 
the Sacramento Pikeminnow has higher critical 
and sustained speeds. These minnows and the 
Sacramento Sucker have been observed darting 
upstream away from disturbances, and have been 
documented swimming up moderately inclined 
Denil fish ladders up to 15.2 m long (Slatick and 
Basham 1985). Myrick and Cech (2000) found 
that 0.2 m to 0.3 m Hardhead, Hitch, Sacramento 
Pikeminnow, and Sacramento Sucker had similar 
swimming performance at select temperatures, 
and that Hitch were significantly (11%) faster at 
higher temperatures.

Some inferences can be made based on size 
or taxonomic group. For example, Wolter and 
Arlinghaus (2003) compiled a model using data 
from several studies, and compared critical 
and burst speeds to body length (Figure 2). 
The model generalizes performance within 
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a family of fish relative to body shapes and 
sizes. The families represented in their model 
include Acipenseridae (sturgeon), Salmonidae 
(salmon and trout), Esocidae (pikes), Percidae 
(perches), and Cyprinidae (minnows). Katopodis 
and Gervais (2016) use fish length, speed, and 
endurance to derive generalized curves. Some of 
the species groups are the same between Wolter 
and Arlinghaus (2003) and Katopodis and Gervais 
(2016). Estimates of speed and endurance for 
all species from Katopodis and Gervais (2016) 
can be made through Swim Performance Online 
Tools (SPOT; see “Additional Resources”). Using 
the performance values of the modeled families, 
the models can be used here to allow predictions 
for local fishes that represent, respectively, the 
following Central Valley species: Green and 
White Sturgeon, Chinook Salmon and Steelhead, 
Sacramento Pikeminnow and Hardhead, Blackfish 
and Sacramento Splittail, and the Sacramento 
Sucker. From this graph, inferences can be made 
on the swimming capabilities of represented 
adults that are longer than those depicted in the 
graph, such as adult White and Green sturgeon.

ADDITIONAL CONSIDERATIONS FOR 
PASSAGE CRITERIA
Designing fish-passage structures to meet several 
species’ behavioral needs, as well as the largest 
fish and the weakest swimmers, will improve 
passage success for a wider variety of species, 
as is being considered in the San Joaquin River 
restoration project (Table 1). The historically 
narrow focus on salmonid passage has not been 
effective for other species. On the Columbia River, 
a 1938 passage elevator designed to help adult 
salmon get past a dam was found to be ineffective 
for this purpose and was decommissioned in 1971, 
even though it was very successful at passing 
sturgeon (Warren and Beckman 1993). Designing 
a traditional fishway to effectively and equally 
accommodate sturgeons, lampreys, salmonids, 
shads and other natives may not be feasible at 
some sites (Daigle et al. 2005). Well-designed 
Denil-type fishways (Figure 5) can pass salmonids 
and a few other species, but not most native fish 
species (Slatick and Basham 1985; Katopodis et 
al. 1991). Extensive modifications created the 

Ice Harbor Fishway design (Figure 6) with a 
partial-depth side slot to improve overflows that 
resulted in greatly improved Shad passage and 
some improvement to salmon passage (Monk et al. 
1989; Petersen et al. 2003). Although challenging 
to design fishways for multiple species, recent 
research provides optimism that knowledge, 
experimental and field studies, computational 
tools (e.g., computational fluid dynamics [CFD] 
software), and data-based swimming performance 
curves for many species are better now than 10 
or 30 years ago (Katopodis and Williams 2012; 
Silva et al. 2012; Katopodis Ecohydraulics Ltd. 
2013; Marriner et al. 2016; Amaral et al. 2018; 
Katopodis et al. 2019; Quaranta et al. 2019).

Multi-Path Considerations
A primary challenge in developing an effective 
fishway is how to separate lamprey from other 
species if the LPS is independent of the primary 
fish passage structure. Some options are to 
develop a passageway within a fishway to help 
lamprey and/or other non-salmonids pass. A 
fishway can be designed as an asymmetrical 
passage structure with reduced turbulence and 
partial baffles on one side; or by adding an LPS 
tube (Figure 7), a culvert; or constructing a 
parallel passageway that provides the complexity 
of natural riverine channels (Wildman et al. 
2005; Goodman and Reid 2017). 

Passage slot size and location, maximum 
velocities, baffling for velocity refuges, conditions 
of turbulence, and surface features of fish passage 
structures need to consider all the species that 
require passage, (e.g., appropriately modified fish 
ladders may increase the passage success of many 
species [DVWK 2002]).

Behavioral Issues
Fish-passage design criteria must allow for the 
behavioral needs of each species. Long baffled 
fishways and fish ladders with turning basins 
(switchbacks) can significantly reduce passage 
efficiency for some species, including shad and 
sturgeon (Thiem et al. 2011; Haro et al. 2012). 
Many species have difficulty in dealing with 
the helical current patterns associated with the 
baffles and orifices found in most fishways. 
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Table 1 San Joaquin River Restoration Project native fish attributes table. Source: SJRRP Fish Management Work Group. Source: 
SJRRP Native Fish Attributes Table, revised May 14, 2013. http://restoresjr.net/

Species Migration time

Life stage 
and direction 

(primary/ 
secondary)

Desired 
migration 

frequency by 
Water Year 

type

Min 
depth 

of
flow 
(m)a

Jump 
(Y/N)

Max fish 
jump height 

(m) Re
co

m
m

en
de

d 
st

ru
ct

ur
e 

ju
m

p 
H

ei
gh

t (
m

)

Cruising 
speedb

(m s–1)

Sustained 
speedb 
(m s–1) 
(max 

sustained)

Burst 
speedb 
(m s–1)

Non-
leaping 
passage Re

co
m

m
en

de
d 

de
si

gn
 

ve
lo

ci
ty

 (m
 s–1

)m

Pacific 
Lamprey

Mar-Jun (primary)s  
Aug-Oct (secondary)

adult US 
ammocetes DS all except 

CLn 0.30

N
(but can 
climb) n/a n/a 0.46p 0.86p

wetted 
ramp 

rounded 
cornersq

0.85

White or
Greenc 

Sturgeon

Mar-Apr (primary)s 
Feb-May (fringe)

Adult (US/DS) 
juvenile DS NW and W 

only 1.00d N n/a n/a 1.23–2.26e swim 
through 2.01

Central Valley 
Steelhead

Oct-March (adult) 
Oct-May (juvenile)

adult (US/DS) 
juvenile DS all except 

CLn 0.37 Y 2.44–3.66f 0.46g 1.04 4.18 8.08 n/a 0.46–
1.22

Chinook 
Salmon (adult)

Mar-May  
(spring run)  

Oct-Dec (fall run) adult US all except 
CLn 0.37 Y 2.13f 0.46g 1.04 3.12 6.83 n/a 0.46–

1.22

Chinook 
Salmon 

(juvenile) Nov-May juvenile (DS/US) all except 
CLn 0.30 Y

0.21 for 
45–65 mm

0.30 for 
80–100 mmg

0.15 0-0.46 0.76 1.52 swim 
through 0.91g

Sacramento 
Pikeminnowh

Mar–May  
(primary)o  
Aug–Oct 

(secondary)

adult (US/DS)
juvenile (US/DS)

W, NW, NDq

(approx.  
2 of 3 yrs) 0.30 Y Probably 

0.61i n/a 0.39 0.78 swim 
through 0.76

Hardheadh Apr–May (primary)
Jun–Aug (fringe)

adult (US/DS) 
juvenile (DS/US)

W, NW, NDq

(approx.  
2 of 3 yrs)

0.30 Y Probably 
0.61i n/a 0.47 0.94 swim 

through 0.91

Hitchh February–March adult (US/DS) 
juvenile DS

W, NW, NDq

(approx.  
2 of 3 yrs)

0.30 Y Probably 
0.30–0.46i n/a 0.39 0.78 swim 

through 0.76

Sacramento
Splittailk

Jan–Feb (primary)o 
Mar, Apr (fringe)

adult (US/DS) 
juvenile DS

W, NW, NDq

(approx.  
2 of 3 yrs)

0.30 Unknown Unknown n/a 0.66 1.33 swim 
through 1.31

Sacramento
Suckerh

Jan–Feb (primary)o  
Dec, Mar, Apr 

(fringe)

adult (US/DS) 
juvenile (DS/US)

W, NW, NDq

(approx.  
2 of 3 yrs)

0.30 Y Unknown n/a 0.47 0.94 swim 
through 0.91

Sacramento
Blackfishj Mar-Julo adult (US/DS) 

juvenile (DS/US) — l 0.30 Unknown Unknown 0.51 1.02 swim 
through

Kern Brook
Lamprey not applicable to Reach 2B

California 
Roach spring adult (US/DS)

juvenile (US/DS) — l 0.30 Y Unknown Unknown Unknown Unknown

Tule Perch — l 0.30 N Unknown 0.06 0.19 0.39 swim 
through

Prickly Sculpin not applicable to reach 2B 0.30 N n/a

Riffle Sculpin not applicable to reach 2B 0.30 N n/a 0.77 0.77

Legend: not used for 
design criteria

US adult salmon 
design criteria

US juvenile salmon 
design criteria

US native fish 
design criteria

 

http://restoresjr.net/
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Studies on the Columbia River at the dam fish-
passage facilities found that shad avoided passing 
through the submerged orifices in the fish-ladder 
baffles. Also, it should be noted that some species 
are documented as avoiding longer culverts (a 
dark tube). Passage performance of native fishes 
under these conditions is less well understood.

Substrates and Surface Features
Substrates are more significant to bottom fishes 
than to midwater fishes. A passage channel with 
anchored rounded baffles (Figure 3), such as 
boulders, could increase sturgeon passage success. 
Adult sturgeon can more easily pass rock ramps 
with scattered boulders than ladders with vertical 
or horizontal baffles (White and Mefford 2002).

Lampreys, the weakest swimmer reviewed 
(Figures 1 and 4), typically swim up high-
velocity corridors by using their oral discs to 

attach to suitable substrates in a burst-and-attach 
behavior. Lamprey-friendly structures need 
adequate smooth anchorage surfaces and rounded 
edges with a radius of no less than 0.15 m, 
to allow them to use their unique burst-and-
attach behavior (USFWS 2014; Ackerman et al. 
2019). Lampreys are most vulnerable in the time 
between successive attachments.

Velocity and Fatigue
The velocity-limiting factor in a multi-species 
fish-passage structure is defined by the smaller, 
weaker swimmers. For fish facility structures to 
effectively pass lampreys they need to provide 
low turbulence and passage velocities < 1.4 m s–1. 
The distance through a structure, or from 
velocity refuge to refuge, and the turbulence 
and size of eddies compared to fish length, are 
important factors that affect passage success 
(Table 2 in CDFG 1998; Silva et al. 2012). Even 
with velocity refuges, successive exposure of a 
species to peak performance conditions creates 
accumulative fatigue (Silva et al. 2012). Passage 
studies in tightly controlled laboratory swimming 
tests may not directly compare to the more 
complex environmental conditions and behaviors 
observed in the field (Castro-Santos 2004). Models 
presented by Bell (1990) and Clay (1995) are based 
on the assumptions that fish would swim at near-
maximal speeds, fish will swim to fatigue, and 
that interspecific and intraspecific variation is 
negligible. This is never true in nature, and it 
prompted research to develop fish performance 
models based on distance traversed (Weaver 1965; 
Castro-Santos 2002; Haro et al. 2004; Katopodis 
and Gervais 2016) and on swim speed-fatigue 
time relationships that allow for variations 
in water velocities and fish swimming speeds 
(Castro-Santos 2006; Katopodis and Gervais 
2016).

Water Depths
For sturgeon, water depth along the passageway 
needs to be at least 0.6 m, and depths > 0.9 m 
are preferred. Sturgeons during migrations were 
observed passing over shallow riffles of 0.6 m 
on the Yuba River in California (2012 in-person 
conversation between A. Seesholtz, CDWR, and Z. 
Matica, unreferenced, see “Notes”).

Table 1 Notes
a. Based on 1.5 times body depth or 1-foot depth, whichever is 

greater, unless otherwise noted.
b. Calculated from Bell (1990) from relationship on page 6.2 unless 

otherwise noted: Cruising speed = 1/6 Vmax, Sustained swimming 
speed = 1/2 Vmax relative to Burst or Darting speed (Vmax)

c. White Sturgeon were considered a valid surrogate for Green 
Sturgeon for the purposes of determining swimming performance 
(CDWR 2007).

d. CDWR 2007; Webber et al. 2007, Recommended velocities are: U/S 
movement: 2.03–2.54 m s–1, resting: 0.51–0.68 m s–1

e. Adams et al. 2003.
f. Bjornn and Reiser (1991).
g. NMFS (2008). Recommended velocities for Columbia and Snake 

River Fish Passage Facilities for upstream passage of juvenile 
salmon:  
0.46–0.76 m s–1 for 46–65 mm juveniles, 0.91–1.37 m s–1 for 
80–100 mm.

h. Myrick and Cech (2000).
i. Based on field observations by T. L. Taylor or L. Wise.
j. Inferred from Myrick and Cech (2000).
k. Young and Cech 1996.
l. Non-migratory behavior for spawning, but will utilize high flow 

connectivity.
m. Recommended average maximum velocities for fish passage 

facilities.
n. Every year except Critical Low water years.
o. Workman (2001).
p. Moser and Mesa (2009).
q. USFWS (2010).
r. Wet, Normal Wet, and Normal Dry years.
s. Harrell and Sommer (2003); Webber et al. (2007).
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Figure 5 A cross-section view of a Denil fishway resting pool and baffle. Source: USFWS (2017).

 

Figure 6 Ice Harbor fishway standard dimensions, where BW is the overflow weir crest width, BB is the non-overflow baffle width, 
A0 is the area of the orifice opening, S0 is the floor slope, L is the pool length, W is the pool width, P is the overflow weir crest height, 
tW is the overflow weir crest thickness, and ε is the distance from the center of the orifice to the side wall. Source: USFWS (2017).
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For fish not well studied, using data from field 
observations and generalizations can provide 
some design considerations (Katopodis and 
Gervais 2016). For Shad, the preferred spawning 
habitat is > 1.0 m deep, but Shad are also seen 
ascending high-velocity shallow riffles with 
depths equal to their body depth (Haro et al. 
2004), indicating that they can pass through 
structures where the water depth is < 1.0 m.

Fish Size
Most fish ladders are designed to accommodate 
salmonid-sized fishes, not the larger sizes of 
adult sturgeons. Warren and Beckman (1993) 
state that the typical length of sturgeon that use 
existing fish ladders is 0.5 m to 1.2 m, and that 
larger sturgeon would have difficulty negotiating 
the orifices of fishways on the Columbia River. 
Scaled-up structures would improve sturgeon 
passage. 

RECOMMENDATIONS
The minimum length of a fish-passage structure 
is dictated by the necessary elevation change at 
the site and by the specifics of the ladder type 
chosen. So, high-head dams may compound 
physiology- and behavior-inhibiting effects 

with some species. The primary parameters in 
the design of a -species fish-passage structure 
through a low-head control weir will be velocity, 
field and intensity of turbulence, adequacy of 
substrate and side surfaces, and the design, 
spacing, and placement of velocity reduction 
baffles. 

Considerations for multi-species fish-passageway 
design should include the following:

• Mimic natural channels.

• Minimize turbulence at water entrance and 
exit flows.

• Reduce helical current patterns inside baffled 
fishways.

• Scale turbulence and size of eddies to body 
lengths.

• Ensure side surfaces are smooth and regular 
and provide an open pathway to pass 
lampreys.

 

Figure 7 Schematic of typical LPS major components and parts. Source: Zobott et al.( 2015).

https://doi.org/10.15447/sfews.2020v18iss3art6somedesignconsiderations


SAN FRANCISCO ESTUARY & WATERSHED SCIENCE

14

VOLUME 18, ISSUE 3, ARTICLE 6

• Ensure bottom surfaces are smooth and 
regular, or have hemispherical baffles, so as 
not to obstruct lamprey and sturgeon passage.

• Ensure bottom passage through or around 
baffles are a minimum of 0.75 m wide and 
0.6 m high to accommodate large sturgeon.

• Ensure attraction water velocities are between 
0.3 m s–1 and 0.9 m s–1.

• Create, via baffling, slow-velocity zones of 
0.6 m s–1 to allow smaller and weaker fishes to 
rest and recover.

• Keep velocities to less than 2.3 m s–1 
to optimize sturgeon passage, or, more 
conservatively 1.5 m s–1, to increase the success 
of smaller sturgeon and lamprey passing. The 
critical swimming speed of lamprey suggests 
a velocity maximum of 1.4 m s–1, but with low 
turbulence, a clear passageway, and smooth 
anchoring surfaces, lamprey can handle 
velocities of up to 2.0 m s–1.

• Offset orifices to provide the highest rates of 
passage in the corresponding lowest times.

•  Reduce Reynolds shear with offset and 
straight orifices to improve fish transit times.

• Use a deflector bar arrangement to reduce 
eddies found in straight orifices to similar in 
size to a fish’s length (Silva et al. 2012).

• Align (do not offset) baffles, which offer 
velocity refuges, to allow straight swimming 
paths of > 0.6 m widths (Webber et al. 2007), 
and space them a minimum of 1.5 BL, or 4.5 m 
and a maximum of 5.5 m to accommodate 
large and small fishes. As a reference, the 
minimum baffle spacing for Chinook Salmon 
to pass in a pool-vertical slot fishway is 1.5 BL 
or 1.5 m.

• Keep unbaffled velocities to less than 1.8 m s–1, 
to pass smaller sturgeon when present.

• Velocity refuges should provide velocities 
in the sustained velocity range of a species. 
Webber et al. (2007), suggests a velocity 
of 0.68 m s–1 for rest and recovery for 
White Sturgeon. That appears to be overly 
conservative, but lamprey would benefit from 
refuge velocities near 1.0 m s–1 (Daigle et al. 
2005).

• Keep water depth > 1.0 m to facilitate sturgeon 
and shad passage. 

• Construct fish ladders without turning basins 
(Thiem et al. 2011). 

• Round the corners of edges and transition 
angles with a radius of at least 0.15 m to 
improve lamprey passage efficiency (CRBLTW 
2004; Ackerman et al. 2019).

• Fasten plastic bristles into the bottom of 
vertical slots (Laine et al. 1998) to help 
lampreys pass.

• Provide alternate passage routes, such as LPSs, 
for lamprey (Goodman and Reid 2017; Moser et 
al. 2019) (Figure 7).

A design option that could meet these conditions 
would need to be more complex than current 
designs, and may have multiple channels to 
pass water and fish along its sides, the bottom, 
and through overtopping slots with reduced 
turbulence. For fish to transition to and beyond 
the facility, passage channels should have 
extended flared approach and departure zones 
to dissipate energy, reducing velocities and 
turbulence. Passage channels for multiple -species 
that need velocity-reduction devices (baffles) 
should have movable baffles and adequate anchor 
points (bolt sites) built into the channels’ surfaces. 
The spacing, size, and shape of these devices 
could be altered to enhance the passage of any 
of the target species and fine-tune a structure 
to the species and the site. Channels could have 
a portion of their widths free of obstacles that 
create turbulence, as well as have turbulence-
dampening structures, large bottom and side 
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orifices, and overflow slots, to allow lamprey, 
shad, and sturgeon to pass. 

The literature presented here underscores the 
lack of data and the uncertainty of how to best 
improve multi-species fish passage. Because fish-
passage data are limited or lacking for many 
species, and their status as species of concern may 
limit availability of some for study, generalizations 
and appropriate surrogate species may need 
to be considered (Cahoon et al. 2005; USFWS 
2014; Katopodis and Gervais 2016). Swimming 
performance tends to be generally similar across 
species with similar life histories when grouped, 
relative to their size, by swimming physiology 
(Katopodis 1992; Katopodis and Gervais 2016). 
Additional studies, and analysis of successful 
structures and of the modifications to existing 
fishways, are needed to improve confidence and 
success in future designs or modifications of 
multi-species fish-passage structures. 
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