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Concantenative Textuality1

Tyler Shoemaker, UC Davis

In recent years, discourse about artificial intelligence (AI) has seen one claim come
and go with near orbital periodicity. AI models, it runs, invent languages of their
own. The claim usually pertains to a class of neural networks trained to predict
sequences of text on the basis of gigantic volumes of data. Researchers and de-
velopers use these networks, or ‘large language models’ (LLMs), to perform tasks
spanning text generation and summarization, machine translation, classification,
and more. But training LLMs on heaps of data appears to have gone beyond pro-
ducing general models of communication. Language modeling at the scale of mil-
lions of documents and billions, if not trillions of parameters now invents ‘new’
natural languages—ones native to AI models themselves.

At least, this is the claim. An early version of it began circulating in 2016
after tech reporters picked up a blog post from Google AI (Schuster, Johnson, and
Thorat 2016). The post summarized how the latest Google Translate model, newly
rebuilt with a neural network, could render translations between two languages
without explicit training. If the model was trained to translate English ↔ Korean
and English ↔ Japanese, Google researchers showed that it could also generalize
to Korean ↔ Japanese, even though its training did not include this third pairing.
Researchers attributed this ability to an “interlingua” in their network; tech report-
ing was characteristically uncritical in its adoption of that term. “Google’s AI
translation tool seems to have invented its own secret internal language,” read one
TechCrunch headline (Coldewey 2016). Wired quickly followed suit the next day,
announcing, “Google’s AI just created its own universal ‘language’ ” (Burgess
2016).

Exactly what comprised this interlingua—its vocabulary and syntax, for
instance—was unclear. Researchers pointed to a scatter plot, its clusters shaded
to mark semantic equivalence across languages; this, apparently, is what Google

1 English translation of “Verkettete Textualität,” Quellcodekritik: Zur
Philologie von Algorithmen, eds. Hannes Bajohr and Markus Krajewski
(Berlin: August Verlag 2024).
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Translate’s interlingua looks like. But later versions of the AI language claim have
fixated on more human-readable examples. When, in 2017, Facebook supposedly
shut down its negotiation chatbots after their conversations had deviated from En-
glish into terse, nonsensical utterances, numerous outlets recorded these exchanges
verbatim. “What an AI’s Non-Human Language Actually Looks Like,” promised
The Atlantic: “you i i i everything else . . . . . . . . . . . . . .” (LaFrance
2017). Most recently, computer scientists at the University of Texas at Austin an-
nounced in a viral Twitter thread that DALL-E 2, OpenAI’s popular text-to-image
generator, also has a “secret language” (Daras 2022; Daras and Dimakis 2022).
They discovered as much by sending transcriptions of the model’s own text-like
images back to DALL-E 2 as new prompts. “ ‘Apoploe vesrreaitais’ means birds.
‘Contarra ccetnxniams luryca tanniounons’ means bugs or pests.” Images gener-
ated by DALL-E 2 in response to these phrases, showing birds on twigs or food in
stoneware (for “Vicootes.”), were meant to back up the scientists’ claims.

In one sense, the relevance of such claims to reading source code is the-
matic. A cryptanalytic leitmotif runs throughout. AI language, “secret” or “hid-
den,” has been cracked like a code—and with it, perhaps, the strange terrain of
non-human intelligence. Outside popular discourse about AI there is a modicum
of truth to this. Research in systems security and model interpretability has de-
scribed the effects of adversarial “triggers” on LLMs, sequences of nonsense text
like “zoning tapping fiennes” and “b 617 matrices dhabi ein wm” (Wallace et al.
2019; Singla et al. 2022; see also Millière 2022). When added to model input,
such triggers force LLMs into errancy. Some sequences flip sentiment appraisals
into polar inversion; others coerce reading comprehension systems into returning
the same answer repeatedly; a third group disrupts entailment models; and a fourth
causes text generators to regurgitate hate speech. Even here, outside the hype about
AI language, there is a temptation to slip into talk of codebreaking with triggers. It
is as if these sequences are evidence of some obscure source code in LLMs. They
seem to suggest a deeper programmatic logic that drives models, one that might
be hacked with only a few characters.

Beyond thematics, the actual practice of source code criticism, as exem-
plified in the work of Mark Marino as well as Winnie Soon and Geoff Cox, can
do much to assess the linguistic status of both triggers and sequences like “Vi-
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cootes” (see Marino 2020; Soon and Cox 2021). For LLMs do not learn from
words. They learn from tokens. And the ‘tokenization’ algorithms that transform
words into tokens are as integral to model performance as are system architec-
ture and training data. This is especially the case with so-called ‘subword’ to-
kens. Quasi-morphemic units like “##riated,” “wa,” and “##γ” are the very stuff
of LLMs; but instead of language, a better way to think about these sequences
would be textuality.2 This is my counter to the AI language claim. While lin-
guists and AI ethicists have made vital critiques of AI language using the idea of
“communicative intent” (Bender and Koller 2020; Bender et al. 2021), the pres-
ence or lack of this intent among LLMs cannot account for the full reach of their
material-semiotic operations. As the newest tokenization algorithms make partic-
ularly clear, LLMs are media systems, capable of signification beyond intent (see
Liu 2010; Lazzarato 2014); source code criticism equips us with a framework to
approach them as such.

My suggestion that we take this approach follows Michael Gavin’s work
on the unique textual objects of language modeling (2019). For Gavin, even the
simplest procedures of mathematizing text, like compiling word frequency lists or
padding corpus documents with zeros, catalyze a shift in registers to a new form of
textuality, albeit one that does not quite converge with the meaning of the term in
the way literature scholars might understand it. Subword tokenization is another
such procedure of the kind Gavin describes, and the process itself offers a highly
effective vantage from which to survey what I call the “concatenative” textuality
of LLMs. The work of this paper is to show as such through an account of one
method for producing subwords: the very algorithm Google researchers employed
to build their highly generalizable translation model.

*

Tokenization is the process of chunking running text into countable units. These
units, or tokens, are central to natural language processing (NLP), for they are

2 Unless indicated otherwise, I use tokens from Hugging Face’s base uncased
BERT (Bidirectional Encoder Representations from Transformers) model,
from Devlin et al. (2019); see https://huggingface.co/bert-base-uncased.

https://huggingface.co/bert-base-uncased


Shoemaker 4

what quite literally counts in the arithmetic of stochastic semantics. Their use
has been all but constant since the earliest language models, running back to the
work of Andrei Markov as well as Claude Shannon’s “Mathematical Theory of
Communication.” To “approach a language” with statistical sampling, Shannon
mostly used character-based tokens of varying lengths (Shannon andWeaver 1998,
43). Tokens comprised of two characters, or bigrams, served as the basis for his
initial models; but models he built from trigrams, tokens with three characters each,
more closely “approach[ed] a language”: “IN NO IST LATWHEY,” reads output
from the latter. “CRATICT FROURE BIRS GROCID PONDENOME.” If this
is an improvement, it is not because Shannon refined his models with linguistic
principles in mind. Importantly, he, like many other computationalists, developed
his tokenizationmethods ad hoc, adapting them on the fly to fit a changing problem
space (Golumbia 2009). Most often a token is just a word—if by ‘word’ onemeans
any sequence of characters set between two white spaces.

From the 1950s on, this definition of token was predominant, though the
late 1980s and early 90s saw occasional departures from white space tokenization.
Researchers in information retrieval experimented with “sublexical” tokens, piec-
ing together words from smaller, combinatoric units in an attempt to reduce the
vocabulary size of their search systems (Kimbrell 1988; Schütze 1992). These scat-
tered experiments appear not to have had a wide influence at the time. However,
the idea resurfaced as a key reference in the 2010s, when research efforts at both
Google and Facebook turned toward the problem of unseen data, or so-called ‘out-
of-vocabulary’ (OOV) items (Mikolov et al. 2011; Schuster and Nakajima 2012;
Bojanowski et al. 2017). As engineers in the first wave of mechanical translation
were to learn, models are only capable of processing tokens that were included in
their original training vocabularies, and this means rare or nonce words are partic-
ularly troublesome during real-world deployment. Techniques for handling OOV
items are legion, but at Google and Facebook, the approach centered on rethinking
the static nature of training vocabularies. Researchers theorized that models could
better handle unseen data if their training equipped them with the atomic building
blocks of words, to be reassembled or newly combined as needed. Models, in
other words, needed to ‘learn’ how to spell.

Training them to do so involved more closely binding tokenization to the
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Figure 1: Searching with sublexical tokens, according to Byte
magazine (Kimbrell 1988).

workings of LLMs. In a departure from other methods of preparing text for lan-
guagemodeling, models like BERT or GPT-3 comewith built-in tokenizers, which
automatically process raw data during training and later downstream tasks; model
builders need give little direction for how this process unfolds, beyond specify-
ing (if desired) a target size for the resultant vocabularies. The rest remains in a
black box. The result: models that can explain jokes, or give extended answers to
writing prompts, and subwords that read, “pre,” “##ters,” “##þ,” “##!.”

Many NLP libraries base their tokenizers on a “byte pair encoding”
(BPE) algorithm devised by Google researchers for their 2016 Google Translate
model, the very one that attracted media attention for its supposed interlingua
(Sennrich, Haddow, and Birch 2016). The algorithm, which I render below
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in Python, is remarkably simple. It contains only two steps. First, it counts
character bigrams in a corpus. Then, on the basis of those counts, it gradually
concatenates those bigrams into longer sequences to approximate the original data.

Step One

1 # Tokenization begins with a pre-generated dictionary of word

2 # counts. The counts are generated from a pass through a white

3 # space tokenizer, which also inserts white space between each

4 # character in every word. Another preparatory step will have

5 # appended corpus documents with special tags to mark sequence

6 # boundaries; the dictionary accounts for these tags as well.

7 # BERT uses [CLS] and [SEP] to annotate, respectively, the start

8 # and end of longer sequences, like sentences; another tokenizer

9 # uses tildes or underscores to represent leading/trailing

10 # spaces; the 2016 version only marks the ends of words, with

11 # </w>.

12 vocab = {

13 "l o w </w>": 5,

14 "l o w e r </w>" 2,

15 "n e w e s t </w>": 6,

16 "w i d e s t </w>": 3

17 }

18

19 import re

20 import collections

21

22 # When initialized, the tokenizer calls a function that loads

23 # the count data...

24 def get_stats(vocab):

25 # ...and creates a new, empty dictionary.

26 pairs = collections.defaultdict(int)
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27

28 # It then iterates through all words in its input,

29 # splitting each into a list of characters.

30 for word, freq in vocab.items():

31 symbols = word.split()

32

33 # For every one of these split words the function

34 # generates a set of sequential bigrams and adds them

35 # to its new dictionary. It gives each the corresponding

36 # count of the word from which those bigrams are

37 # derived. If a bigram is already in the dictionary

38 # because of a previous word, the function updates that

39 # bigram's count by adding the new count to the old one.

40 for i in range(len(symbols) - 1):

41 pairs[symbols[i], symbols[i + 1]] += 1

42

43 # When it has finished iterating through all words in its

44 # input, the function then returns the new dictionary.

45 return pairs

Step Two

43 # With the new counts generated, the tokenizer selects a bigram.

44 # This bigram is either the most frequent one in the counts, or

45 # it is the one that most increases the overall likelihood of a

46 # simple, probabilistic language model fitted to the corpus.

47 # Whatever the metric, once the tokenizer selects a bigram it

48 # calls a second function, sending in the selected bigram and

49 # the original dictionary of split words.

50 def merge_vocab(pair, v_in):

51 # The function creates a new dictionary...
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52 v_out = {}

53

54 # ...and turns the bigram into a searchable string.

55 bigram = re.escape(' '.join(pair))

56 p = re.compile(r'(?<!\S)' + bigram + r'(?!\S)')

57

58 # It then searches for this bigram in the input dictionary.

59 for word in v_in:

60 # When it finds a match in the input, the function

61 # concatenates the left and right components of this

62 # bigram into a single token. For example, the input

63 # word "l o w e r </w>," with bigram "er," becomes

64 # "l o w er </w>." If the concatenated bigram is in

65 # the middle of a word, some versions of the

66 # tokenization algorithm, like the one BERT uses, will

67 # add a new tag to mark this ("l o w ##er </w>").

68 w_out = p.sub(''.join(pair), word)

69

70 # With the bigram made, it is placed in the new

71 # dictionary, and the frequency count of the input word

72 # is associated with it.

73 v_out[w_out] = v_in[word]

74

75 # Once the function finds all possible bigram matches in its

76 # input, it returns the new dictionary. Step two is then

77 # complete.

78 return v_out

79

80 # A single run through these two steps does not accomplish much,

81 # but the tokenizer will repeat this process multiple (often

82 # very many) times.

83 num_merges = 5

84
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85 # After it finds and concatenates all instances of a selected

86 # bigram, it returns to the first step and counts every bigram

87 # from the new, modified version of the word counts.

88 for _ in range(num_merges):

89 # This time, the resultant counts will reflect the sequences

90 # that include the newly made tokens, rather than each of

91 # their separate characters.

92 pairs = get_stats(vocab)

93

94 # These new counts will then influence which bigram

95 # components should be selected and concatenated next...,

96 best = max(pairs, key = pairs.get)

97

98 # ...which will in turn influence subsequent counts, further

99 # bigram selections, and so on. Gradually, recognizable words

100 # will begin to re-form out of the character sequences. A few

101 # hundred iterations after merging "er," the tokenizer might

102 # select "ow," to build "l ow er </w>"---as well as

103 # "p i l l ow </w>," "ow </w>," "ow n er </w>," and more. The

104 # process continues, merging sequences within words, until

105 # one of two conditions is met: either the tokenizer runs out

106 # of bigrams to create (in which case its output mirrors its

107 # input), or, more commonly, it reaches a predetermined

108 # number of subwords; any remaining bigrams are left as is.

109 # With either condition met, the process finishes and the

110 # tokenized corpus data is ready for modeling. Some words

111 # are reassembled, others are not, but in both cases a model

112 # will be able to represent them during training and

113 # downstream tasks.

114 vocab = merge_vocab(best, vocab)
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Original Tokens Merged Output
l o w </w> low </w>
l o w e r </w> low e r </w>
n e w e s t </w> n e w est</w>
w i d e s t </w> w i d est</w>

Table 1: Output from putting the sample vocabulary through five
iterations of the 2016 BPE tokenizer

Taken together, the above code blocks comprise a rather pedestrian counter
to the AI language claim. That models like DALL-E 2 respond to sequences
like “Apoploe vesrreaitais” has far less to do with invention than concatenation,
a process by which LLMs string together fuzzy, bootstrapped representations of
their training data “without focusing on semantics” (Schuster and Nakajima 2012,
5150). Again: how do you learn to use a word you’ve never seen before? You
start by spelling it out: “A pop loe v es r re ait ais.”3 But fixed-length sequences of
the kind Shannon modeled do not provide adequate material to do so. Key to the
changeover subwords bring is variability. They are the result of a pervading indif-
ference about what, at base, constitutes the atomic elements of text data. Subwords
may be single characters from several script systems, prefix-like bigrams, chunks
that isomorphically resemble morphemes, or even—most strangely of all—entire
words. Whatever the form, for every such sequence a model will produce an em-
bedding. Subwords in this sense enact a profound flattening effect on text. With
them, a word is no different in nature than a single character.

*

While such a flattening may trouble the extent to which subwords count as lan-
guage, it remains an open question whether, and how, they are to be read. Again,
my interests here are in the unique textuality of LLMs and their subwords. If there

3 These tokens are from the OpenAI tokenizer tool, which uses a version of
the GPT-3 tokenizer implemented by Walton (2020); see
https://beta.openai.com/tokenizer.

https://beta.openai.com/tokenizer
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is indeed a change or challenge to the way one reads the latter, the limit case for
this difference must be those instances where a tokenized character string appears
no different from a word. What, in other words, is the difference between “lower,”
the word, and “lower,” the subword? In one sense: none—and yet. The difference
between these strings is, as Marcel Duchamp might say, infra-thin [inframince],
but a difference, perhaps, it is.

I will approach this difference from two, somewhat abbreviated routes.
The first is orthography. A reader’s intuition that subwords might be analogized
in terms of spelling or punctuation would be well placed; the various conventions
typographers have developed to divide words across a text block are further points
of comparison.4 But there is also the special orthography of what Pip Thornton
calls “language in the age of algorithmic reproduction” (Thornton 2018). From
“program, ##matic, token, ##ization” there is a direct connection with the broader
textual condition of linguistic capitalism, where services like autocomplete nudge
writing into predictable (read: more economically exploitable) expressions (see
Cayley 2013; Kaplan 2014). Among the buyers of Google Ads, writes Frédéric
Kaplan, there is “not much bidding on misspelled words,” a point about which Jeff
Dean, the lead at Google AI, would have to concede (2014, 59). Orthographic nor-
malization has been the company’s businessmodel from its earliest days. Recounts
Dean, “In 2001, some colleagues sitting just a few feet away from me at Google
realized they could use an obscure technique called machine learning to correct
misspelled Search [sic] queries” (Dean 2021). Many of today’s LLMs—and the
subwords they require—descend from this very moment.

Put another way, in the orthography of linguistic capitalism, a token
(textual unit) is always also a token (unit of currency). Thornton’s “{poem}.py”
project, which tallies up the cost of canonical poems according to their contents’
Google AdWords prices, makes this particularly clear (Thornton 2016). But,
turn over the thermal-printed receipt for Wordsworth’s “Daffodils,” and you will

4 In the English language context, one of the best-known style guides, Hart’s
Rules, formulates word divisions in predictive terms: “The principle is that
the part of the word left at the end of a line should suggest the part
commencing the next line” (1921, 54).
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also find a slate of brand new modeling infrastructures, which have appeared
during the widespread adoption of LLMs. Consider OpenAI, which fixes its
prices directly on subword tokens. With the embeddings for the latest models in
its GPT series kept locked away, the company’s services are instead accessible
through a paid API. To use its base models, prices range from $0.0008–0.06 per
batch of 1,000 tokens; custom models, trained on a dataset of one’s choosing,
will cost as much as $0.12 per batch. A pricing guide tells us, “You can think of
tokens as pieces of words, where 1,000 tokens is about 750 words”—a convenient
mismatch, for customers will end up paying more for OpenAI’s modeling services
than their word counts would otherwise indicate. OpenAI spins this catch with
wry, Wittgensteinian literalness: “Many| words| map| to| one| token|,| but| some|
don|’t|:| ind|iv|isible|”.

Figure 2: OpenAI’s tokenizer tool.
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To OpenAI’s pricing schemes one might add thousands of Jupyter Note-
book tutorials, many of the apps hosted by Hugging Face Spaces, prompt engi-
neering services, “chain authoring” (Wu et al. 2022), and startups solely dedicated
to optimizing models for low-cost deployment. The ordinary practice of language
modeling is now stationed within a whole “semiotic infrastructure” dedicated to
managing and manipulating textual data (Weatherby and Justie 2022, 382). The
work of mapping the many concatenations that support this new infrastructure will
be, I expect, a major task of future source code critics. But so too may the effects
of these concatenations be found on the very surfaces of LLM outputs. They abide,
for instance, in the difference between “indivisible” and “ind|iv|isible,” and even in
moments when, as with “lower” and “lower,” that difference becomes infra-thin.

*

My second route is semiotic, and it requires digging up the origins of subword
tokenization. In its current form, the BPE algorithm is very much a product of
contemporary machine learning. Curiously, it does not originate from earlier text
preparation methods in NLP, like stemming or lemmatization. Its developers in-
stead followed what is now a common pattern among machine learning practi-
tioners, sourcing the technique from a distant research domain and patching it ad
hoc into their own system at Google (see Mackenzie 2017; Roberge and Castelle
2021). BPE was originally intended as a data compression technique, and it was
first published in 1994 by Philip Gage, a software engineer. Gage’s version works
on the same bigram logic as today’s tokenizers, but instead of matching and merg-
ing chunks of text, it selects pairs of adjacent bytes in a block of data and encodes
them into a single byte. It then iteratively builds on the units it creates. Bytes
that represent encoded pairs are encoded into new bytes, the latter into another set,
and so on, until the compressor reduces its input data into the smallest possible
footprint.

Gage provides an example: a sequence like ABABCABCD would be-
come XXCXCD, where X stands for AB; the new sequence would in turn become
XYYD, where Y is XC (1994, 3). Likewise, “l o w e r </w>” becomes “l o w
er </w>”, and then eventually “l ow er </w>,” “l ow er</w>,” “low er</w>,” and
finally “lower</w>.” Significantly, in the latter case the sequences a tokenizer
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uses to represent subwords are not external data; instead, they are fragments of
the original character sequences in the corpus. In something of a reversal of the
original BPE logic, subword tokenization encodes texts by decompressing them
into longer sequences, before decoding them back into more recognizable strings.

Alexandra Schneider’s definition of compression, that it is “the reduction
of data to the threshold of comprehensibility,” would be one way to state my limit
case challenge between word and subword in the context of the original BPE al-
gorithm (2019, 140). But Gage himself will also move in the direction of textual
matters in 1996, when he returns to his compressor and rewrites it (Gage 1997).
This second version only accepts text files. It works quite similarly to his 1994
program, though Gage adds an intriguing check, which runs before the program
begins compressing data. I record a fragment of the relevant source code (in C)
below:

1 /* The compressor creates, among other macros, a maximum size

2 * limit for the blocks of data it will read in. */

3 #define MAXSIZE 65535L

4

5 /* With this done, it defines a function, which accepts

6 * arguments for a file to be compressed (input) and the

7 * compressed version of that file (output). */

8 void compress (FILE *input, FILE *output)

9 {

10 /* Several variables are initialized at the top of this

11 * function. I will only list one of them: the variable

12 * that handles buffer allocation, which corresponds to

13 * the size of the macro set above. When the compressor

14 * assigns this variable, it creates a pointer to the

15 * location in memory where the input file will be

16 * stored. */

17 buffer = (unsigned char *)malloc(MAXSIZE);

18
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19 /* With all variables initialized, the function reads the

20 * input file into the memory buffer and performs the

21 * first of two error checks. */

22 size = fread(buffer,1,MAXSIZE,input);

23

24 /* First, it determines whether the file is too large to

25 * compress. If so, the compressor outputs an error

26 * message to the user and quits. */

27 if (size == MAXSIZE) {

28 printf("File too big\n");

29 exit(1);

30 }

31

32 /* If the file passes the size check, the compressor

33 * performs a second check. It iterates through each

34 * byte in the buffer and, ... */

35 for (i=0; i<size; i++)

36 /* ...for every byte, it checks whether the number

37 * this byte represents exceeds 127. */

38 if (buffer[i] > 127) {

39 /* If the byte is larger than 127, the

40 * compressor will also quit, again returning

41 * an error message before doing so. The reason

42 # it cannot accept anything larger than this

43 * number has to do with a decision Gage makes:

44 * unlike the original compressor, which looks

45 * for any unused byte in the memory block, the

46 * text version reserves all high-order bytes

47 * (128-256) to encode pairs. */

48 printf("This program works only on text files\n");

49 exit(1);

50 }

51 }
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In text, the high-order bytes that Gage’s compressor checks for represent the ex-
tended set of ASCII characters. The practical consequence of this check is that
any character within this set cannot be compressed by the algorithm. Accented
characters (Á, ñ), certain mathematical and currency symbols (±, ¼, ¥), characters
for rendering basic text graphics (░, ┤), and others will all raise an error: “This
program only works on text files.” Put another way, anything beyond what the
Unicode Consortium calls “Basic Latin” is, in this source code, not text, or text.

There is much to elaborate here about how this erasure re-inscribes the
linguistic hegemony of Latin alphabetics in digital media; among others, Lydia
Liu’s work on Shannon and “Printed English” (mentioned above) would be a ma-
jor point of reference. For the time being, however, I will only acknowledge this
as a future site of critique—and add, as a preliminary step toward one, a reminder
that, for contemporary LLMs, BPE tokenization often serves to handle the very
kind of text that Gage puts under erasure. This adds an ironic dimension to BPE’s
proliferation, to be sure. But in working toward a close, I want to pursue another
dimension of the message, “This program only works on text files.” For this mes-
sage also suggests that the output of BPE compression is itself text. That is, if
high-order ASCII is text, then any data encoded into this space will also fall under
that same category, subwords included. To read the message in this second sense
is to therefore return to the considerations I have already laid out: what is this text,
and in what way might it shape the unique textuality of subwords, these tokens
that are neither language nor words?

Among the source code files of current BPE tokenizers, there is a nam-
ing convention that suggests one answer. The code blocks for the 2016 Google
Translate model have made use of it already:

28 for word, freq in vocab.items():

29 symbols = word.split()

Here it is (in Rust) in the BERT tokenizer hosted at Hugging Face (“Tokenizers”
2022):
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1 #[derive(Debug, Clone, Copy)]

2 struct Symbol {

3 c: u32,

4 prev: isize,

5 next: isize,

6 len: usize

7 }

8 impl Symbol {

9 /// Merges the current Symbol with the other one.

10 /// In order to update prev/next, we consider Self to be the

11 /// symbol on the left, and other to be the one on the right.

12 pub fn merge_with($mut self, other: $Self, new_c: u32) {

13 self.c = new_c;

14 self.len += other.len;

15 self.next = other.next;

16 }

17 }

Elsewhere, it appears in explanatory comments, as in the Python function below,
which is part of OpenAI’s GPT-2 encoder (Radford et al. 2019):

1 def get_pairs(word):

2 """Return a set of symbol pairs in a word.

3

4 Word is represented as a tuple of symbols (symbols being

5 variable-length strings).

6 """

7 pairs = set()

8 prev_char = word[0]

9 for char in word[1:]:
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10 pairs.add((prev_char, char))

11 prev_char = char

12 return pairs

For these and other tokenizers, the concatenated strings generated by subword to-
kenization are symbols. Despite the many recent claims that say deep learning has
brought about a paradigm shift in the practice and epistemology of AI, contem-
porary language modeling remains in an important sense tied to the realm of the
symbolic. Within this realm, a symbol betokens a linkage, which may in turn beto-
ken another. Whole chains of linkages are thus condensed down to the threshold
of comprehensibility, into flattened, variable-length sequences of characters. One
such chain links “lower” to its infra-thin variant, “lower.” Other concatenations
abound. All hold place, notating.

In doing so, they challenge, I think, the very borders of what constitutes
modeling. For with subwords, LLMs do not model language, and neither do they
model tokens nor text. They model text, which is itself a bootstrapped model of
the corpus data from which it was derived. Large language models model models.
And we are left to read the results.



Shoemaker 19

Appendix

Below I record outputs from several hundred iterations of the 2016 BPE tokenizer.
The corpus is the same one Google researchers included in their original release
of the algorithm. It contains ads for construction companies and travel agencies,
snippets from the PHP manual, licensing boilerplate, terms and conditions, and
bible verses—quintessential internet text, in other words.

1 iteration

i r o n c e m e n t i s a r e a d y f o r u s e p a s t e w h i c h

i s l a i d a s a f i l l e t b y p u t t y k n i f e o r f i n g

e r i n t h e m o u l d e d g e s ( c o r n e r s ) o f t h e s t

e e l i n g o t m o u l d . i r o n c e m e n t p r o t e c t s t

h e i n g o t a g a i n s t t h e h o t , a b r a s i v e s t e e l

c a s t i n g p r o c e s s . a f i r e r e s t a n t r e p a i r c

e m e n t f o r f i r e p l a c e s , o v e n s , o p e n f i r e

p l a c e s e t c . c o n s t r u c t i o n a n d r e p a i r o f

h i g h w a y s a n d . . . a n a n n o u n c e m e n t m u s t b e

c o m m e r c i a l c h a r a c t e r . g o o d s a n d s e r v i c

e s a d v a n c e m e n t t h r o u g h t h e P . O . B o x s y s t e

m i s N O T A L L O W E D . d e l i v e r i e s ( s p a m ) a n

d o t h e r i m p r o p e r i n f o r m a t i o n d e l e t e d . t

r a n s l a t o r I n t e r n e t i s a T o o l b a r f o r M S I

n t e r n e t E x p l o r e r . i t a l l o w s y o u t o t r a n

s l a t e i n r e a l t i m e a n y w e b p a s g e f r o m o n e l

a n g u a g e t o a n o t h e r .

250 iterations

iron c ement is a re ad y for use p ast e which is l a i d as a fil l et

by p ut t y k n i f e or f ing er in the m ould e d g es ( c or ners ) of

the st e el ing ot m ould . iron c ement prot ec ts the ing ot ag a in st

the h ot , ab r asi ve st e el c asting pro c ess . a f ire restan t re p

a ir c ement for f ire pl ac es , o v en s , open f ire pl ac es et c .
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con str u c tion and re p a ir of high w ay s and ... an an n oun c ement

m ust be com mer c i al char ac ter . g o o ds and s er vic es ad v an c

ement th rou gh the P . O . B o x s y st em is N O T A L L O W E D .

deli veri es ( sp am) and other i m proper in for mation del et ed . tr

an s l at or I n ter net is a T o ol b ar for M S I n ter net E x plorer

. it allow s you to tr an s l ate in re al ti me an y w e b p as g e from

one l an g u ag e to an other .

500 iterations

iron c ement is a read y for use p ast e which is lai d as a fil let by

put t y k ni fe or fing er in the m ould e d g es ( cor ners ) of the st

e el ingot m ould . iron c ement prot ec ts the ingot ag ain st the h ot

, abrasi ve st e el c asting pro c ess . a fire restant rep air c ement

for fire plac es , o v en s , open fireplac es etc . con str uc tion and

rep air of high w ays and ... an an n oun c ement m ust be commer ci al

charac ter . go o ds and servic es ad v an c ement th rou gh the P . O .

B o x syst em is N O T A L L O W E D . deli veries ( sp am ) and other im

proper information deleted . trans lator I n ter net is a T o ol b ar

for M S I n ter net E x plorer . it allow s you to trans late in real

time an y we b p as ge from one lan g u age to an other .

2,500 iterations

iron cement is a ready for use paste which is laid as a fillet by putty

kni fe or finger in the m ould ed ges ( cor ners ) of the ste el ingot

m ould . iron cement protects the ingot against the hot , abrasive ste

el casting process . a fire restant rep air cement for fire places ,

ovens , open fireplaces etc . con struc tion and rep air of high ways

and ... an announ cement must be commercial charac ter . go ods and

services advancement through the P . O . Bo x system is N O T A L L O

W E D . deli veries ( sp am ) and other im proper information deleted .

translator Internet is a T o ol b ar for MS Internet Ex plorer . it

allows you to translate in real time any web pas ge from one language

to another .
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